
 CorpusSearch 2: a tool for linguistic research

Download Page

Features

Compatible Corpora

Users Guide

Credits

Report Bugs

Developers

CorpusSearch 2 is a Java program that supports research in corpus linguistics. It is
useful both for the construction of syntactically annotated (parsed) corpora and for
searching them. Running CorpusSearch on an appropriately annotated corpus a
user can automatically:

● find and count lexical and syntactic configurations of any complexity
● correct systematic errors
● code the linguistic features of corpus sentences for later statistical analysis

Both the input and output files of CorpusSearch are ordinary text files, with
syntactic annotations in the Penn-Treebank format.

CorpusSearch 2 runs under any Java-supported operating system, including Linux,
Macintosh, Unix and Windows. It requires Java 2, version 1.3 or later. In addition to
being downloadable from this site, CorpusSearch is distributed with the Penn-
Helsinki Parsed Corpora of Historical English.

Last modified: Fri Nov 20 13:37:00 EST 2009

http://sourceforge.net/projects/corpussearch/
http://sourceforge.net/tracker/?group_id=129306
http://www.ling.upenn.edu/hist-corpora
http://www.ling.upenn.edu/hist-corpora
http://sourceforge.net/

 CorpusSearch 2: a tool for linguistic research

Download Page

CS Home

Report Bugs

Developers

Features of CorpusSearch 2:

● Tree search configurations in CS are defined in a Boolean query language
over tree predicates.

● The output of a CS search is itself searchable.
● CS runs on any Java-supported platform.
● The CS query language contains many features to make searching easier and

more intuitive for linguistic research.
● CS has extensive user configuration options.

For more details, read the CorpusSearch on-line Users Guide.

Last modified: Wed Feb 23 19:43:04 EST 2005

http://sourceforge.net/projects/corpussearch/
http://sourceforge.net/tracker/?group_id=129306
http://sourceforge.net/

 CorpusSearch 2: a tool for linguistic research

Download Page

CS Home

Report Bugs

Developers

A list of corpora compatible with CorpusSearch
The following historical corpora have been constructed to be compatible with
CorpusSearch. Other parsed corpora can easily be made compatible with the
program, as described in the Users Guide.

Parsed corpora of historical English:

● The Penn-Helsinki Parsed Corpus of Middle English, 2nd edition
(PPCME2), currently available.

● The Penn-Helsinki Parsed Corpus of Early Modern English
(PPCEME), currently available.

● The York-Helsinki Parsed Corpus of Old English Poetry, currently
available.

● The York-Toronto-Helsinki Parsed Corpus of Old English Prose,
currently available.

● The Brooklyn-Geneva-Amsterdam-Helsinki Parsed Corpus of Old
English, currently available.

● The York-Helsinki Parsed Corpus of Early English Correspondence
(PCEEC), currently available.

http://sourceforge.net/projects/corpussearch/
http://sourceforge.net/tracker/?group_id=129306
http://www.ling.upenn.edu/hist-corpora/
http://www.ling.upenn.edu/hist-corpora/
http://www-users.york.ac.uk/~lang18/pcorpus.html
http://www-users.york.ac.uk/~lang22/YcoeHome1.htm
http://www-users.york.ac.uk/~sp20/corpus.html
http://www-users.york.ac.uk/~sp20/corpus.html
http://www-users.york.ac.uk/~lang22/PCEEC-manual/index.htm
http://www-users.york.ac.uk/~lang22/PCEEC-manual/index.htm

● The Penn Parsed Corpus of Modern British English (1700-1914),
under construction at the University of Pennsylvania by Anthony
Kroch and Beatrice Santorini.

Historical parsed corpora of other languages:

● The Tycho Brahe Corpus, a parsed corpus of historical
Portuguese
 Charlotte Galves (U. of Campinas, Brazil) and collaborators.

● Modéliser le changement: les voies du français, a parsed
corpus of historical French
 France Martineau (University of Ottawa) and collaborators.
 (Click here for the English language page.)

Last modified: Fri Nov 20 19:43:04 EST 2009

http://www.ling.upenn.edu/hist-corpora/PPCMBE-RELEASE-1/index.htm
http://www.ime.usp.br/~tycho/index.html
http://www.arts.uottawa.ca/voies/voies_fr.html
http://www.arts.uottawa.ca/voies/voies_en.html
http://sourceforge.net/

 CorpusSearch 2 Users Guide

This guide evolves with the program it
describes.

Suggestions for improvement are always welcome.
Please send them to:

CorpusSearch comments.

Click here for a free-standing pdf file of the entire
Users Guide.

I. Introduction

1. Basic Concepts
2. What's new in CorpusSearch 2
3. Getting started with CorpusSearch

II. The Query Language

1. Query language overview
2. Search function descriptions
3. Logical operator use
4. The command file

III. Searching

1. Understanding search output files (.out)
2. Searching for words and node labels
3. Search tips

IV. Shortcuts

1. Definitions files (.def)
2. Preferences files (.prf)

V. Advanced Functions

1. Coding
2. Building a lexicon

mailto:corpussearch@babel.ling.upenn.edu
http://corpussearch.sourceforge.net/CS-manual/CorpusSearch_Guide.pdf

3. Local frames
4. Automated corpus revision

VI. How to Make Your Corpus Compatible with CorpusSearch

VII. CorpusSearch Quick Reference Page

VIII. Searching a part-of-speech tagged corpus

IX. CorpusDraw

1. CorpusDraw Basic Concepts
2. CorpusDraw Editing Buttons
3. CorpusDraw Display Buttons
4. CorpusDraw Keyboard and Mouse Shortcuts

Updates
CorpusSearch Home

 CorpusSearch 2: a tool for linguistic research

Download Page

CS Home

Report Bugs

Developers

CorpusSearch was written by Beth Randall as part of a project at the University of
Pennsylvania, directed by Anthony Kroch, to create large parsed corpora of
historical English. The program design is due to Beth Randall, Ann Taylor and
Anthony Kroch.

We thank the following individuals and institutions for their help and financial
support in the development of CorpusSearch:

● Ann Taylor (University of Pennsylvania and University of York, Linguistics
Departments), for extensive help in testing the program over the course of
several years.

● Beatrice Santorini, Tom McFadden and others at the University of
Pennsylvania and elsewhere for collaboration in using and testing the
program.

● English Arts and Humanities Research Board Grant B/RG/AN5907/APN9528,
Anthony Warner and Susan Pintzuk (University of York), Principal
Investigators, for financial support.

● DARPA Grant N66001-00-1-8915, Martha Palmer (University of
Pennsylvania, Computer Science Department), Principal Investigator, for
financial support.

● NSF Grant BCS-0508731, Anthony Kroch (University of Pennsylvania,
Linguistics Department), Principal Investigator, for financial support.

● Purchasers of licenses to earlier versions of CorpusSearch, for their
encouragement and financial support.

http://sourceforge.net/projects/corpussearch/
http://sourceforge.net/tracker/?group_id=129306
http://sourceforge.net/

 CorpusSearch 2: a tool for linguistic research

Download Page

CS Home

Report Bugs

Developers

Program Documentation:

● For documentation of the CorpusSearch 2 source code, read the JavaDoc
documentation (available soon).

● For details on program usage, read the CorpusSearch on-line Users Guide.

Last modified: Wed Feb 23 19:43:04 EST 2005

http://sourceforge.net/projects/corpussearch/
http://sourceforge.net/tracker/?group_id=129306
http://sourceforge.net/

 CorpusSearch 2: a tool for linguistic research

Download Page

CS Home

Report Bugs

Developers

CorpusSearch has been used to search Middle English, Old, Middle, and Modern
English corpora, as well as corpora of Chinese, Korean and Yiddish. In order for CS
to search a corpus it must meet the following formatting requirements:

1. Every sentence in the corpus must be completely parsed; that is, every word
must be labeled and must be included within the outside brackets of some
sentence.

2. Phrasal and part-of-speech labels may not contain a space or other white
space character, nor may they begin with digits.

3. Constituents must be bracketed with parentheses -- "(" and ")" -- not with
square brackets or other delimiters.

4. Every sentence must have a "wrapper", that is, an unlabeled pair of
parentheses surrounding the sentence.

Below is an example of a sentence bracketed in accordance with these guidelines,
using the labels of the PPCME2 and PPCEME. Note that CorpusSearch is indifferent
to the choice of phrasal and part-of-speech labels.

((IP-MAT (ADVP-TMP (ADV Then)) (NP-SBJ (D the) (N child)) (VBD
became) (ADJP (ADJR happier) (CONJ and) (ADJR happier)) (E_S .)))

For more information on corpus formatting for CorpusSearch see the
CorpusSearch Users Guide.

Last modified: Wed Feb 23 20:11:20 EST 2005

http://sourceforge.net/projects/corpussearch/
http://sourceforge.net/tracker/?group_id=129306
http://sourceforge.net/

 Basic Concepts

Table of Contents

CorpusSearch Home

Contents of this chapter:

What is CorpusSearch?
input to CorpusSearch

source file(s)
command file

output of CorpusSearch
search output
coding output
frames output
lexicon output

What is CorpusSearch?

CorpusSearch finds linguistic structures in a corpus of parsed, labelled sentences. It also has
other features, including support for the automatic creation of coding strings for statistical analysis
and the automatic creation of a lexicon for a corpus.

A new feature of CorpusSearch 2 is support for corpus creation, in the form of automated
modification of corpus tree structures. This feature is useful for correction systematic errors and
for applying global changes in annotation guidelines to an entire corpus.

input to CorpusSearch

CorpusSearch needs two pieces of information:

● a corpus of sentences to search (source file(s)).
● a specification of what structures to search for (command file).

source file(s)

A source file is any file that contains parsed, labelled sentences. This could be a file from the
Penn Parsed Corpora of Historical English or from another parsed corpus. It could also be an output
file from a previous search, or perhaps a file of sentences that the user has cut and pasted together.
Any number of source files can be searched in a single one run of CorpusSearch.

command file

The command file contains a query, which describes the structures being searched for, and
possibly additional control and output specifications. This additional material may specify the
node boundaries within which to search, and may choose various options for specifying the form of
the output.

output of CorpusSearch

CorpusSearch always builds a text output file, containing the sentences with the specified structure,
and basic statistics.

search output

The output file contains the sentences that were found to contain the searched-for structure, along
with comments describing where the structures were found. Statistics are kept detailing the number
of "hits," that is, distinct constituents containing the structure, the number of matrix
sentences ("tokens") containing hits, and the total number of tokens in the file. Notice that the
number of hits may change depending on the definition of the boundary node.

coding output

CorpusSearch can be asked to create an output file in which a coding string is added to each
boundary node in the corpus that matches a given query. The content of the columns in the
coding string can be specified automatically by subqueries.

frames output

CorpusSearch can be asked to generate the set of all local syntactic environments within which a
given word of the corpus occurs. Local environments are defined as syntactic sisters of the part-
of-speech label of the word and are called local frames.

lexicon output

CorpusSearch can be asked to generate a lexicon for a corpus. The lexicon is a list of every word in
the corpus along with the number of times it occurs under each part-of-speech label that it can have.

Top of page
Table of Contents

 What's New in CorpusSearch 2

Table of Contents

CorpusSearch Home

Contents of this chapter:

changes to the query language
additions to the query language
new node boundary
new search functions
changes to coding
new printing commands
new capabilities
discontinued functions

changes to the query language

In previous versions of CorpusSearch, subqueries had to be appended one at a time, like this:

query: ((((A function B)
 AND (C function D))
 AND (E function F))
 AND (G function H))

In CorpusSearch 2, subqueries can be appended with any logical combination of parentheses. The
above query is more easily written:

query: (A function B)
 AND (C function D)
 AND (E function F)
 AND (G function H)

Old-style queries still work.

additions to the query language

In previous versions of CS, the only query conjunction was "AND". CorpusSearch 2 has added "OR"
and "NOT".

new node boundary

There is a new node-boundary option, $ROOT, which is a variable that stands for the root node of
a matrix sentence (token), whatever its label may be. Even in cases where the root node has no label,
it can be referred to with $ROOT.

new search functions

new search functions include:

Dominates
iDomsMod
hasSister
isRoot
sameIndex

These search functions have new algorithms:

iPrecedes
Precedes

Also, search functions that take an integer argument no longer have the argument jammed onto the
end of the function name, but are written with a space before the argument. For example, instead of:

(WRONG!) query: (CODING column2 q)

you should now write this:

query: (CODING column 2 q)

These functions are affected:

column
domsWords
domsWords<
domsWords>
iDomsNumber
iDomsTotal
iDomsTotal<
iDomsTotal>

new printing commands

reformat_corpus
print_only

changes to coding

Coding is now performed once per boundary node, instead of once per sentence (token).

Also, the command "coding_query:" must now appear before the coding query.

new capabilities

CorpusSearch 2 includes lexicon building, automated corpus revision, and local-frames production.

discontinued functions

iDoms_conj_switch: see iDomsMod
anyPrecedes: see precedes
print_complement: see NOT

Top of page
Table of Contents

 Getting started with CorpusSearch

Table of Contents

CorpusSearch Home

Contents of this chapter:

paths and shells
invoking CorpusSearch
your query/output directory

paths and shells

In the description below, we assume that CorpusSearch is installed in the top-level directory and
that other files also have locations that are simply specified. To put the program and other files
into convenient locations and to define aliases that make running the program easier, it is necessary
to learn something of how paths work on whatever system you are running. This is especially
important if you are running CorpusSearch on a multiuser machine. The documentation for
your operating system will contain a complete discussion of how paths work. The syntax
differs somewhat across operating systems, though the concepts are the same.

If you are using a unix-derived system, including linux and Mac OS X, you should also learn
something about what shells are and how they work. We assume here that you are using the c-shell,
but you may find yourself in a Bourne shell (bash) environment, where the syntax of path
specfication and other matters is a bit different. Again, documentation on shells is widely available.

invoking CorpusSearch

CorpusSearch now comes in a single jar file called "CS.jar," which must be installed in an
appropriate directory (folder) of your computer. We will assume that you have installed CS.jar into
the directory "FOO," which is at the root level of your hard disk. CorpusSearch can then be invoked
by typing the following line at a command line prompt (here "%>") in a terminal window:

%>java -classpath /FOO/CS.jar csearch/CorpusSearch

A terminal window can be obtained under any flavor of unix/linux by launching an xterm under X11.
On a Macintosh running OS X, it can also be obtained by launching the Terminal program.
Under Windows, depending on the version of the operating system you are running, use
Start>Run>cmd or Start>Run>command to launch the appropriate window. The -classpath switch
can be left out if your shell initialization file or equivalent specifies the classpath.

Because Windows path syntax differs slightly from unix path syntax, you must invoke
CorpusSearch under Windows with the following line, assuming that you have installed it in a
directory "FOO" at the top of the C:\ drive:

%>java -classpath "C:\FOO\CS.jar" csearch/CorpusSearch

Note that, under Windows, the direction of the slashes changes between the class path and
the command invocation.

To save typing, the following alias can be entered into your .cshrc file if you are running any variant
of the c-shell on any unix system, including Mac OS X. An equivalent form exists for the bash shell.

alias CS 'java -classpath /FOO/CS.jar csearch/CorpusSearch'

If you put CorpusSearch anywhere but in a top-level directory, or if you install it on a multi-

user machine, you must include the entire path to the CS.jar file in any command that invokes it.

your query/output directory

Let us assume that you have a corpus in the directory "corpus" at the root of your hard disk. Make a
new sister directory of "corpus"; you might call it "corpus_stuff". This directory will hold your query
files (ending with ".q"), and your output files (ending with ".out").

Here's a CorpusSearch command using the query file "inversion.q," run from a directory
called "corpus_stuff" on a unix machine:

%>CS inversion.q ../corpus/*

This command will search the entire corpus (because of the "/*" after "corpus"). The output will appear
in a file called "inversion.out" in the corpus_stuff directory.

Be patient; a search of a million word corpus takes a few minutes, depending on the complexity of
the query. To run a search in the background under unix, write "&" at the end of your command:

%>CS inversion.q ../corpus/* &

Top of page
Table of Contents

 The CorpusSearch Query Language

Table of Contents

CorpusSearch Home

Contents of this chapter:

about the query language
search function calls
wild cards and escaping wild cards
logical operators
regular expressions

about the query language

The CorpusSearch query language has these basic components:

● search-function calls. Each search function looks for one basic relationship, like "dominates" or
"precedes".

● arguments to search-function calls. These describe the nodes being searched for. Search function
arguments may take the form of an or-list, may include wild cards, and may be negated.

● AND, OR and NOT. AND, OR, and NOT are used as in basic formal logic.
● open parenthesis, "(", and close parenthesis, ")". Parentheses are used as in basic formal logic.

search function calls

The most basic query is a single search-function call. For instance, here is a query that searches
for nodes labelled QP ("quantifier phrase") that immediately dominate nodes labelled CONJ
("co-ordinating conjunction"):

(QP iDominates CONJ)

and here is a sentence found by the query:

/~*
and so he is bo+te more and lasse to his seruaunt.
(CMWYCSER,351.2223)
*~/

/*
 1 IP-MAT: 9 QP, 10 CONJ bo+te
 1 IP-MAT: 9 QP, 12 CONJ and
*/

(0
 (1 IP-MAT (2 CONJ and)
 (3 ADVP (4 ADV so))
 (5 NP-SBJ (6 PRO he))
 (7 BEP is)
 (8 ADJP
 (9 QP (10 CONJ bo+te) (11 QR more) (12 CONJ and) (13 QR lasse))
 (14 PP (15 P to)
 (16 NP (17 PRO$ his) (18 N seruaunt))))
 (19 E_S .))

 (ID CMWYCSER,351.2223))

Any number of search-function calls may be combined into more complex queries using AND, OR,
and NOT.

wild cards and escaping wild cards

CorpusSearch supports two wild cards, namely * and #.

*

* works as in regular expressions, that is, it stands for any string of symbols. For instance, "CP*"
means any label beginning with the letters CP (e.g. CP, CP-ADV, CP-QUE-SPE). "*-SPE" means any
label ending with "-SPE", and *hersum* means any string containing the substring "hersum" (e.
g., "hersumnesse", "unhersumnesse"). * by itself will match any string. * may be used anywhere in
the function argument; beginning, middle or end.

escaping the asterisk (*)

Some labels, for example "*con*" ("subject elided under conjunction"), contain the character '*'. If
you're looking for such a label, use \ (escape character) to show that you're searching for * and not
using it as a wild card. For instance, to search for *con* dominated by a noun phrase, you could use
this query:

(NP* dominates *con*)

to find (among others) this sentence:

/~*
ne did euyll.
(CMMANDEV,1.14)
*~/

/*
 1 IP-MAT: 3 NP-SBJ *con*
*/

(0
 (1 IP-MAT (2 CONJ ne)
 (3 NP-SBJ *con*)
 (4 DOD did)
 (5 NP-OB1 (6 N euyll))
 (7 E_S .))
 (ID CMMANDEV,1.14))

#

is the wild card for digits. For instance, to find prepositions divided into parts, you could use
this query:

(PP iDominates P#)

to find sentences like this:

/~*
Anone there $with all arose sir Gawtere
(CMMALORY,199.3135)
*~/

/*

 1 IP-MAT: 4 PP, 7 P21 $with
 1 IP-MAT: 4 PP, 8 P22 all
*/

(0
 (1 IP-MAT
 (2 ADVP-TMP (3 ADV Anone))
 (4 PP
 (5 ADVP (6 ADV there))
 (7 P21 $with)
 (8 P22 all))
 (9 VBD arose)
 (10 NP-SBJ (11 NPR sir) (12 NPR Gawtere)))
 (ID CMMALORY,199.3135))

escaping integers

Integer arguments are expected for some search functions and not allowed for others. But suppose
you want to search for a piece of text that is an integer, for instance a year. You can't do this:

(WRONG!) query: (1929 exists)

because "exists" won't take an integer argument. To cause the query parser to accept an integer as
text, use a "\" as follows:

query: (\1929 exists)

logical operators

Search-function calls may be combined using the logical operators AND, OR, and NOT.

There are also logical operators that act on arguments to search functions. These are |, which means
"or" for a list of arguments (e.g. "MD*|HV*" means "MD* or HV*"), and "!", which negates an argument
(or list of arguments) (e.g. "NP-SBJ dominates !N" returns cases where NP-SBJ does not dominate N.)

regular expressions

CorpusSearch allows the use of regular expression syntax in the arguments to functions. For
example, the expression "[xyz]" stands for a single character that is either an "x", a "y" or a "z". Note
that the period character "." stands for any letter or digit and the sequence ".*" stands for any
sequence of such characters. If the argument in the query contains a literal period, it must be
escaped with a "\", as in the case of asterisk.

Top of page
Table of Contents

 The CorpusSearch Search Functions

Table of Contents

CorpusSearch Home

Contents of this chapter:

General considerations
Search functions

CCommands
Column
Dominates
DomsWords
DomsWords<
DomsWords>
Exists
HasSister
iDominates
iDomsFirst
iDomsLast
iDomsMod
iDomsNumber
iDomsOnly
iDomsTotal
iDomsTotal<
iDomsTotal>
InID
iPrecedes
IsRoot
Precedes
SameIndex

General considerations
We commonly refer to the first argument to a search function as "x", and the second argument as "y".

To save typing and to improve readability, CorpusSearch allows shorthands and lower-case/upper-
case variations for the names of search functions. Acceptable variants are listed below with
each function.

When a function has an integer argument, there is always a space between the function and
argument. This syntax is a change from earlier versions of CorpusSearch.

Search functions

CCommands (variants: cCommands, ccommands)

A node x ccommands a node y if and only if:

1. neither x nor y dominates the other AND
2. the first branching node dominating x does dominate y.

In the following tree,

 A
 / \
 B C
 / \ \
 D E F

B ccommands C and F and both C and F ccommand B, D and E. D and E, on the other hand,
ccommand only each other. A ccommands no node because, being the root of the tree, it dominates
all of the other nodes. The following query:

query: (NP-SBJ* idoms PRO$) AND (PRO$ ccommands NP*)

finds examples like:

(NP-SBJ (PRO$ his)
 (ADVR+Q ouermoch)
 (N fearinge)
 (PP (P of)
 (NP (PRO you))))

in which a possessive pronoun ccommands a noun phrase, here the object of a
prepositional complement to the head noun.

Column (variants: column, Col, col)

"Column" is used to search columns of the CODING node, or any other leaf whose text is written
in columns separated by ":".

If, for instance, you want to find sentences whose CODING node contains an "m" or "n" in the
7th column, use this query:

query: (CODING column 7 m|n)

If you want to find sentences whose CODING node does not contain a "p" or "q" in the 4th column,
use this query:

query: (CODING column 4 !p|q)

Dominates (variants: dominates, Doms, doms)

dominates means "dominates to any generation." That is, y is contained in the sub-tree dominated by
x. Dominates will accept text as y, but text as x will always return an empty set (text never dominates
a subtree.) Notice that the following query uses the escape character, "\", to search for *arb*:

(IP-INF dominates *arb*)

returns this sentence:

/~*
And soo by the counceil of Merlyn the kyng lete calle his barons to counceil,
(CMMALORY,14.419)
*~/

/*
 18 IP-INF: 19 NP-SBJ *arb*
*/

(
 (18 IP-INF (19 NP-SBJ *arb*)
 (20 VB calle)
 (21 NP-OB1 (22 PRO$ his) (23 NS barons))
 (24 PP (25 P to)
 (26 NP (27 N counceil))))
 (ID CMMALORY,14.419))

DomsWords (variants: domsWords, domswords)

domsWords counts the number of words dominated by the search-function argument. So
"domsWords 4" means "dominates 4 words", domsWords 2 mean "dominates 2 words", and so on.
A word in this case is defined as a leaf node that is not on the word_ignore_list. Here's the
default word_ignore_list:

RMV:*|COMMENT|CODE|ID|LB|'|\"|,|E_S|0|**

Thus, traces, 0 complementizers, punctuation, and comments are not counted as words.

So this query:

node: NP*

(NP-OB* domsWords 3)

will return this structure (ignoring the trace *ICH*-1):

/~*
and by kynge Ban and Bors his counceile they lette brenne and destroy all the
contrey before them there they sholde ryde.
(CMMALORY,20.613)
*~/

/*
 24 NP-OB1: 27 N contrey
*/

(
 (24 NP-OB1 (25 Q all)
 (26 D the)
 (27 N contrey)
 (28 CP-REL *ICH*-1))
 (ID CMMALORY,20.613))

(only the NP-OB1 node was printed in this output because the query file included the line "node: NP*").

DomsWords< (variants: domsWords<, domswords<)

domsWords< is just like domsWords except that it returns structures that dominate strictly less than
the given number of words. For instance, this query:

(NP-OB* domsWords< 3)

will return this structure:

/~*
for it was I myself that cam in the lykenesse.
(CMMALORY,5.131)

*~/

/*
 6 NP-OB1: 9 PRO$+N myself
*/

(
 (6 NP-OB1 (7 PRO I)
 (8 NP-PRN (9 PRO$+N myself)))
 (ID CMMALORY,5.131))

(only the NP-OB1 node was printed in this output because the query file included the line "node: NP*").

DomsWords> (variants: domsWords>, domswords>)

domsWords> is just like domsWords except that it returns structures that dominate strictly more
than the given number of words. For instance, this query:

(NP-OB* domsWords> 3)

will return this structure:

/~*
for she was called a fair lady and a passynge wyse,
(CMMALORY,2.9)
*~/

/*
 9 NP-OB1: 20 ADJ wyse
*/

(
 (9 NP-OB1
 (10 NP (11 D a) (12 ADJ fair) (13 N lady))
 (14 CONJP (15 CONJ and)
 (16 NP (17 D a)
 (18 ADJP (19 ADV passynge) (20 ADJ wyse)))))
 (ID CMMALORY,2.9))

(only the NP-OB1 node was printed in this output because the query file included the line "node: NP*").

Exists (variants: exists)

exists searches for label or text anywhere in the sentence. For instance, this query:

(MD0 exists)

will find this sentence:

/~*
but I fere me that I shal not conne wel goo thyder /
(CMREYNAR,14.261)
*~/

/*
 10 IP-SUB: 15 MD0 conne
*/

(
 (10 IP-SUB
 (11 NP-SBJ (12 PRO I))
 (13 MD shal)
 (14 NEG not)
 (15 MD0 conne)
 (16 ADVP (17 ADV wel))
 (18 VB goo)
 (19 ADVP-DIR (20 ADV thyder)))
 (ID CMREYNAR,14.261))

A common mistake is to use "exists" unneccessarily, as in this example:

(MD exists) AND (MD iPrecedes VB)

If a sentence contains the structure (MD iPrecedes VB), MD necessarily exists in the sentence. So
this query would get the same result:

(MD iPrecedes VB)

HasSister (variants: hasSister, hassister)

x hasSister y if x and y have the same mother. It doesn't matter whether x precedes y or y precedes x.
So this query:

node: IP*
query: (NP-SBJ hasSister BE*)

finds both of these sentences:

/~*
indeede I must be gone:
(DELONEY,69.13)
*~/
/*
1 IP-MAT-SPE: 5 NP-SBJ, 10 BE
*/

((IP-MAT-SPE (PP (P+N indeede))
 (NP-SBJ (PRO I))
 (MD must)
 (BE be)
 (VBN gone)
 (. :))
 (ID DELONEY,69.13))

/~*
I pray you is it true?
(DELONEY,70.47)
*~/
/*
13 IP-SUB-SPE: 16 NP-SBJ, 14 BEP
*/

((CP-QUE-SPE (IP-MAT-PRN-SPE (NP-SBJ (PRO I))
 (CODE {TEMP:prn_ok})
 (VBP pray)
 (NP-ACC (PRO you)))
 (IP-SUB-SPE (BEP is)

 (NP-SBJ (PRO it))
 (ADJP (ADJ true)))
 (. ?))
 (ID DELONEY,70.47))

iDominates (variants: idominates, iDoms, idoms)

iDominates means "immediately dominates". That is, x dominates y if y is a child (exactly one
generation apart) of x. So this query:

((NP* iDominates FP) AND (FP iDominates ane))

finds this sentence:

/~*
Sythen he ledes +tam by +tar ane,
(CMROLLEP,118.978)
*~/

/*
 1 IP-MAT: 11 NP, 13 FP ane
*/

(0
 (1 IP-MAT
 (2 ADVP-TMP (3 ADV Sythen))
 (4 NP-SBJ (5 PRO he))
 (6 VBP ledes)
 (7 NP-OB1 (8 PRO +tam))
 (9 PP (10 P by)
 (11 NP (12 PRO$ +tar) (13 FP ane)))
 (14 E_S ,))
 (ID CMROLLEP,118.978))

/*

Notice that "iDominates" describes the relationship between a label and its associated text (e.g., "FP"
and "ane").

iDomsFirst (variants: idomsfirst)

"iDomsFirst" means "immediately dominates as a first child."

For instance, this query:

node: IP*
query: (NP* iDomsFirst PRO$)

results in this output:

/~*
My Lady yor mother, I thanke God, is very well and cheerly,
(KNYVETT-1630,86.12)
*~/
/*
1 IP-MAT: 2 NP-SBJ, 3 PRO$
1 IP-MAT: 7 NP-PRN, 8 PRO$
*/

((IP-MAT (NP-SBJ (PRO$ My)

 (N Lady)
 (NP-PRN (PRO$ yor) (N mother)))
 (, ,)
 (IP-MAT-PRN (NP-SBJ (PRO I))
 (VBP thanke)
 (NP-ACC (NPR God)))
 (, ,)
 (BEP is)
 (ADJP (ADJP (ADV very) (ADJ well))
 (CONJP (CONJ and)
 (ADJX (ADJ cheerly))))
 (. ,))
 (ID KNYVETT-1630,86.12))

iDomsLast (variants: idomslast)

"iDomsLast" means "immediately dominates as a last child."

So this query:

node: IP*
query: (IP* iDomsLast BEN)

results in this output:

/~*
but keepes her chamber because of the Bitter weather that hath been.
(KNYVETT-1630,86.13)
*~/
/*
31 IP-SUB: 31 IP-SUB, 36 BEN
*/

((IP-MAT (CONJ but)
 (NP-SBJ *con*)
 (VBP keepes)
 (NP-ACC (PRO$ her) (N chamber))
 (PP (P+N because)
 (PP (P of)
 (NP (D the)
 (ADJ Bitter)
 (N weather)
 (CP-REL (WNP-1 0)
 (C that)
 (IP-SUB (NP-SBJ *T*-1)
 (HVP hath)
 (BEN been))))))
 (. .))
 (ID KNYVETT-1630,86.13))

iDomsMod (variants: idomsmod)

x immediately dominates (mod z) y if x dominates y, and the only nodes intervening on the path from
x to y (if any) are members of z. Note that if no intervening nodes at all occur on the path from x to
y, the query function is still true. The most obvious use of this function is to search within
conjuncts. Thus, to search for pronominal subjects within conjoined NPs, you can use the
following query:

node: IP*
query: (NP-SBJ iDomsMod NP*|CONJ* PRO)

finds this sentence:

/~*
So by the entrete at the last the kyng and she met togyder.
(CMMALORY,4.104)
*~/
/*
1 IP-MAT: 21 NP-SBJ, 31 PRO, 27 CONJP
*/

(0 (1 IP-MAT (2 ADVP (3 ADV So))
 (5 PP (6 P by)
 (8 NP (9 D the) (11 N entrete)))
 (13 PP (14 P at)
 (16 NP (17 D the) (19 ADJ last)))
 (21 NP-SBJ (22 NP (23 D the) (25 N kyng))
 (27 CONJP (28 CONJ and)
 (30 NP (31 PRO she))))
 (33 VBD met)
 (35 ADVP (36 ADV togyder))
 (38 E_S .))
 (40 ID CMMALORY,4.104))

The query

node: IP*
query: (NP-SBJ iDomsMod NP*|CONJ* !PRO)

would also find the above sentence because "NP-SBJ iDomsMod NP" is true of the full NP "the king."

iDomsNumber (variants: idomsnumber, iDomsNum, idomsnum)

"iDomsNumber" means "immediately dominates as the #th child". That is, x immediately dominates y
as the #th child if x immediately dominates y and y is the #th child of x. Note that "iDomsNumber 1"
is identical to "iDomsFirst." This query:

(CP-DEG iDomsNumber 1 C)

produces this output:

/~*
And Merlion was so disgysed that kynge Arthure knewe hym nat,
(CMMALORY,30.939)
*~/

/*
 1 IP-MAT: 9 CP-DEG, 10 C that
*/

(0
 (1 IP-MAT (2 CONJ And)
 (3 NP-SBJ (4 NPR Merlion))
 (5 BED was)
 (6 ADJP (7 ADVR so)
 (8 VAN disgysed)
 (9 CP-DEG (10 C that)
 (11 IP-SUB
 (12 NP-SBJ (13 NPR kynge) (14 NPR Arthure))
 (15 VBD knewe)
 (16 NP-OB1 (17 PRO hym))

 (18 NEG nat))))
 (19 E_S ,))
 (ID CMMALORY,30.939))

iDomsOnly (variants: idomsonly)

iDomsOnly means "immediately dominates as an only child." That is, x immediately dominates y as
an only child if x immediately dominates y and y is the only legitimate child of x. So this query:

(ADJP iDomsOnly Q*)

results in this output:

/~*
But after my lytyll wytt it semeth me, sauynge here reuerence, +tat is more.
(CMMANDEV,123.2992)
*~/

/*
 23 IP-SUB: 27 ADJP, 28 QR more
*/

(
 (23 IP-SUB
 (24 NP-SBJ (25 D +tat))
 (26 BEP is)
 (27 ADJP (28 QR more)))
 (ID CMMANDEV,123.2992))

iDomsTotal (variants: idomstotal)

iDomsTotal counts the number of nodes immediately dominated by the search- function
argument. Traces count as daughters unless they are added to the ignore list. The following query:

(NP-OB* iDomsTotal 3)

yields this output:

/~*
And +tere it lykede him to suffre many repreuynges and scornes for vs
(CMMANDEV,1.4)
*~/

/*
 10 IP-INF-1: 13 NP-OB1, 16 CONJP
*/

(
 (10 IP-INF-1 (11 TO to)
 (12 VB suffre)
 (13 NP-OB1 (14 Q many)
 (15 NS repreuynges)
 (16 CONJP (17 CONJ and)
 (18 NX (19 NS scornes))))
 (20 PP (21 P for)
 (22 NP (23 PRO vs))))
 (ID CMMANDEV,1.4))

Here, the 3 nodes immediately dominated by NP-OB1 are labelled Q, NS, and CONJP.

iDomsTotal< (variants: idomstotal<)

iDomsTotal< is like iDomsTotal except that it returns structures that immediately dominate strictly
less than the given number of nodes. So this query:

(NP-OB* iDomsTotal< 3)

yields this output:

/~*
& take of euereche iliche myche
(CMHORSES,125.397)
*~/

/*
 1 IP-IMP: 8 NP-OB1, 9 QP
*/

(0
 (1 IP-IMP (2 CONJ &)
 (3 VBI take)
 (4 PP (5 P of)
 (6 NP (7 Q euereche)))
 (8 NP-OB1
 (9 QP (10 ADV iliche) (11 Q myche))))
 (ID CMHORSES,125.397))

iDomsTotal> (variants: idomstotal>)

iDomsTotal> is like iDomsTotal except that it returns structures that immediately dominate strictly
more than the given number of nodes. So this query:

(NP-OB* iDomsTotal> 3)

will yield this output:

/~*
& aftur tak an hot yre +tat is smal bi-fore
(CMHORSES,95.119)
*~/

/*
 1 IP-IMP: 6 NP-OB1, 10 CP-REL
*/

(0
 (1 IP-IMP (2 CONJ &)
 (3 ADVP-TMP (4 ADV aftur))
 (5 VBI tak)
 (6 NP-OB1 (7 D an)
 (8 ADJ hot)
 (9 N yre)
 (10 CP-REL (11 WNP-1 0)
 (12 C +tat)
 (13 IP-SUB (14 NP-SBJ *T*-1)
 (15 BEP is)
 (16 ADJP (17 ADJ smal))
 (18 ADVP-LOC (19 ADV bi-fore))))))
 (ID CMHORSES,95.119))

InID (variants: inID)

"inID" is true of substrings of the ID node. This functin is introduced because the ID node, being
outside of the parsed sentence, cannot serve as an argument of a search function. In particular,
(ID iDominates *) will return no hits.

Here's a typical ID node from the Malory parsed file in the Middle English corpus:

(ID CMMALORY,3.41)

To isolate Malory sentences from an output file, you could use this query:

query: (*MALORY* inID)

iPrecedes (variants: iprecedes, iPres, ipres)

This function is true if and only if its first argument immediately precedes its second argument in
the text string spanned by the parse tree.

The algorithm for "x iPrecedes y" runs as follows:

1.) Find x.

2.) If x has an immediately following sister, then that sister and all its leftmost descendants (that is,
the first child of the sister, the first child of the first child, and on as far as the tree goes) are
candidates for y.

3.) If x has no immediately following sister, recurse from 2.) with the mother of x in place of x.

The following query:

query: ([1]as iPrecedes sone) AND (sone iPrecedes [2]as)

produces this output:

/~*
and as sone as he myght he toke his horse
(CMMALORY,206.3401)
*~/
/*
1 IP-MAT: 6 as, 8 sone, 11 as
*/

((IP-MAT (CONJ and)
 (ADVP-TMP (ADVR as)
 (ADV sone)
 (PP (P as)
 (CP-CMP (WADVP-1 0)
 (C 0)
 (IP-SUB (ADVP-TMP *T*-1)
 (NP-SBJ (PRO he))
 (MD myght)
 (VB *)))))
 (NP-SBJ (PRO he))
 (VBD toke)
 (NP-OB1 (PRO$ his) (N horse)))
 (ID CMMALORY,206.3401))

IsRoot (variants: isRoot, isroot)

isRoot searches for the argument label at the root of the tree of the parsed token. For instance,
this query:

query: (CP* isRoot)

will return all tokens in the corpus whose root is a CP, for instance, the following sentence:

/~*
why thou whoreson when wilt thou be maried?
(DELONEY,79.296)
*~/
/*
1 CP-QUE-SPE: 1 CP-QUE-SPE
*/

((CP-QUE-SPE (INTJP (WADV why))
 (NP-VOC (PRO thou) (N$+N whoreson))
 (WADVP-1 (WADV when))
 (IP-SUB-SPE (ADVP *T*-1)
 (MD wilt)
 (NP-SBJ (PRO thou))
 (BE be)
 (VAN maried))
 (. ?))
 (ID DELONEY,79.296))

IsRoot ignores the node boundary set by the query and returns results based only on the label of
the root of the parse tree of each token in the input file.

Precedes (variants: precedes, Pres, pres)

"x precedes y" means "x comes before y in the tree but x does not dominate y". So this query:

(VB precedes NP-OB*)

produces this output:

/~*
thenne have ye cause to make myghty werre upon hym. '
(CMMALORY,2.25)
*~/

/*
 9 IP-INF-PRP: 11 VB make, 12 NP-OB1
*/

(
 (9 IP-INF-PRP (10 TO to)
 (11 VB make)
 (12 NP-OB1 (13 ADJ myghty)
 (14 N werre)
 (15 PP (16 P upon)
 (17 NP (18 PRO hym)))))
 (ID CMMALORY,2.25))

SameIndex (variants: sameIndex, sameindex)

x sameIndex y finds structures where x ends with the same index as y. This is useful in searching

for antecedents with the same index as a trace. For instance, this query:

node: IP*
query: (NP* iDoms *exp*) AND (NP* sameIndex CP*)

finds this sentence:

/~*
hym thought there was com into hys londe gryffens and serpentes,
(CMMALORY,33.1031)
*~/
/*
1 IP-MAT: 2 NP-SBJ-1, 3 *exp*, 9 CP-THT-1
*/

((IP-MAT (NP-SBJ-1 *exp*)
 (NP-OB2 (PRO hym))
 (VBD thought)
 (CP-THT-1 (C 0)
 (IP-SUB (NP-SBJ-2 (EX there))
 (BED was)
 (VBN com)
 (PP (P into)
 (NP (PRO$ hys) (N londe)))
 (NP-2 (NS gryffens) (CONJ and) (NS serpentes))))
 (E_S ,))
 (ID CMMALORY,33.1031))

Top of page
Table of Contents

 CorpusSearch Logical Operators

Table of Contents

CorpusSearch Home

Contents of this chapter:

search-function operators:
AND

same-instance
same-instance with prefix indices

OR
NOT

argument operators:
! (not)

not one argument at a time
ordering ! and prefix indices

| (or)
negating a list

AND

AND, in its simplest form, returns trees in which both conjuncts hold within a single boundary node.
For instance, this query:

node: IP*

query: (NP-TMP* iDominates ADV*)
 AND (TO iPrecedes VB)

yields this output:

/*
4 IP-INF-SBJ: 5 NP-TMP, 6 ADV+NS, 8 TO, 10 VB
*/

((IP-MAT (CONJ but)
 (IP-INF-SBJ (NP-TMP (ADV+NS oftymes))
 (TO to)
 (VB rede)
 (NP-OB1 (PRO it)))
 (MD shal)
 (VB cause)
 (NP-OB1 (PRO it))
 (IP-INF (ADVP (ADV wel))
 (TO to)
 (BE be)
 (VAN vnderstande))
 (E_S /))
 (ID CMREYNAR,6.10))

AND; same-instance

AND has been implemented with a default feature that we call "same-instance." If the same label
occurs twice in search functions conjoined by AND, CorpusSearch assumes that the two

occurrences should refer to the same node in the tree. Thus, the following query

(IP* iDomsNumber 1 VBP|VBD) AND (IP* iDomsNumber 2 ADVP|PP*)

returns only trees where the same IP node has the described number 1 and 2 children. Trees
containing one IP with number 1 child VBP and some other IP with number 2 child ADVP are
not returned.

The same-instance assumption is triggered by matching argument label strings, so that

(ADVP precedes MD|HV*|VB*) AND (MD|HV*|VB* precedes NP-SBJ)

returns only sentences with the same instance of MD|HV*|VB*, but

(ADVP precedes MD|VB*|HV*) AND (MD|HV*|VB* precedes NP-SBJ)

returns sentences with the same instance or different instances (because the argument lists do
not match as strings due to the difference in order of elements.)

Same-instance does not apply within single clauses of a query. Thus the query (ADVP precedes ADVP)
is not vacuous.

AND; same-instance with prefix indices

If you need to specify which arguments coincide (that is, refer to the same instance) and which
don't, you can use prefix indices. Matching arguments with the same prefix index must
coincide, matching arguments with different prefix indices must not coincide. Prefix indices must
be enclosed by the square brackets "[" and "]".

For example, suppose you are looking for two sister noun-phrases that each immediately dominate
a pronoun. Use prefix indices as follows:

([1]NP* hasSister [2]NP*) AND ([1]NP* iDominates [3]PRO) AND ([2]NP* iDominates
[4]PRO)

to find sentences like this one:

/~*
And +tere it lykede him to suffre many repreuynges and scornes for vs
(CMMANDEV,1.4)
*~/

/*
 1 IP-MAT: 5 NP-SBJ-1, 8 NP-OB2, 6 PRO it, 9 PRO him
*/

(0
 (1 IP-MAT (2 CONJ And)
 (3 ADVP-LOC (4 ADV +tere))
 (5 NP-SBJ-1 (6 PRO it))
 (7 VBD lykede)
 (8 NP-OB2 (9 PRO him))
 (10 IP-INF-1 (11 TO to)
 (12 VB suffre)
 (13 NP-OB1 (14 Q many)
 (15 NS repreuynges)
 (16 CONJP (17 CONJ and)
 (18 NX (19 NS scornes))))
 (20 PP (21 P for)
 (22 NP (23 PRO vs)))))

 (ID CMMANDEV,1.4))

Here's another example:

query: (IP-SMC iDoms [1]NP*)
 AND ([1]NP* iDoms [3]**)
 AND (IP-SMC iDoms [2]NP*)
 AND ([2]NP* iDoms [4]**)

This query searches for a node labelled IP-SMC which immediately dominates two different NP*
nodes, each immediately dominating a trace. In this example, the two mentions of IP-SMC must refer
to the same node in the tree (same-instance); [1]NP* and [2]NP* must refer to different nodes
(because of the different prefix indices); similarly, [3]** and [4]** must not coincide. If the
substrings following the indices were not identical, then the arguments would not be forced to pick
out distinct nodes.

Here's a sentence found by the above query:

/~*
+After +t+am L+acedemonie gecuron him to ladteowe, Ircclidis w+as haten,
(OR4,1.53.30.12)
*~/

/*
 23 IP-SMC: 24 NP-NOM *-2, 25 NP-NOM-PRD *ICH*-1
 23 IP-SMC: 25 NP-NOM-PRD *ICH*-1, 24 NP-NOM *-2
*/

(0 (1 CODE)
 (2 IP-MAT
 (3 PP (4 P +After)
 (5 NP-DAT (6 D^D +t+am)))
 (7 NP-NOM (8 NPR^N L+acedemonie))
 (9 VBDI gecuron)
 (10 NP-DAT-RFL-ADT (11 PRO|D him))
 (12 PP (13 P to)
 (14 NP-DAT (15 N|D ladteowe)))
 (16 , ,)
 (17 IP-MAT-PRN (18 NP-NOM-2 *pro*)
 (19 NP-NOM-1 (20 NPR^N Ircclidis))
 (21 BEDI w+as)
 (22 VBN haten)
 (23 IP-SMC (24 NP-NOM *-2)
 (25 NP-NOM-PRD *ICH*-1)))
 (26 . ,))
 (27 ID OR4,1.53.30.12))

OR

OR is logical disjunction. "(FOO) OR (BAR)" returns all subtrees rooted in an instance of the
query's selected node boundary in which either the property "FOO" or the property "BAR" or both
hold. "FOO" and "BAR" may consist of single search functions or be built up out of
conjunctions, disjunctions and negations of simple search functions.

NOT

WARNING: NOT is currently under active development. It does not yet work correctly in any but
the simplest cases. Avoid it except for testing purposes.

NOT returns trees rooted in the node boundary that do not contain the described structure. It
differs from ! because none of the arguments need to appear in the node boundary-defined domain.

For instance,

NOT(NP* precedes VB*)

returns trees that do not contain the structure (NP* precedes VB*), including those that contain
neither NP* nor VB*.

On the other hand,

(NP* iPrecedes !VB*)

returns trees that contain an NP* which does not iPrecede VB*.

! (not)

! is used to negate one argument to a search function.

For instance, suppose you're looking for sentences in which the nodes immediately dominated by
the subject do not include a pronoun. You could use this query:

(NP-SBJ* iDominates !PRO*)

to obtain sentences like this:

/~*
a runde fot & +ticke bi-come+t an hors wel.
(CMHORSES,87.17)
*~/

/*
 1 IP-MAT: 2 NP-SBJ, 10 ADJ +ticke
*/

(0
 (1 IP-MAT
 (2 NP-SBJ (3 D a)
 (4 ADJP (5 ADJ runde)
 (6 CONJP *ICH*-1))
 (7 N fot)
 (8 CONJP-1 (9 CONJ &))
 (10 ADJ +ticke))
 (11 VBP bi-come+t)
 (12 NP-OB1 (13 D an) (14 N hors))
 (15 ADVP (16 ADV wel))
 (17 E_S .))
 (ID CMHORSES,87.17))

! one argument at a time

CorpusSearch does not allow you to negate both arguments to a single search function. So this is *not*
a legitimate command, and its appearance will abort a search:

(!NP-SBJ iPrecedes !VBD)

ordering ! and prefix indices

If you need to use both ! and prefix indices, put the ! before the indices.

For instance, suppose you're looking for sentences that contain a subject that precedes the object,
and neither the subject nor the object contains a pronoun. You could use this query:

 (NP-SBJ* precedes NP-OB1*)
AND (NP-SBJ* iDominates ![1]PRO*))
AND (NP-OB1* iDominates ![2]PRO*))

to obtain sentences like these:

/~*
& +tat schal be a good hors.
(CMHORSES,85.9)
*~/

/*
 1 IP-MAT: 3 NP-SBJ, 7 NP-OB1, 4 D +tat, 10 N hors
*/

(0
 (1 IP-MAT (2 CONJ &)
 (3 NP-SBJ (4 D +tat))
 (5 MD schal)
 (6 BE be)
 (7 NP-OB1 (8 D a) (9 ADJ good) (10 N hors))
 (11 E_S .))
 (ID CMHORSES,85.9))

Notice that it is necessary to use prefix indices before the PRO* labels. Otherwise, CorpusSearch
would try to find an NP-SBJ* and an NP-OB1* both dominating the *same* not-PRO* object, and
would come up empty.

| (or argument)

Any number of arguments to a search function may be linked together into an argument list using
|, which means "or". For instance,

(*VB*|*HV*|*BE*|*DO*|*MD* iPrecedes NP-SBJ*)

means "*VB* or *HV* or *BE* or *DO* or *MD* immediately precedes NP-SBJ*," and will find
sentences like this:

/~*
+Tan was pompe & pryde cast down & leyd on syde.
(CMKEMPE,2.12)
*~/

/*
 2 IP-MAT-1: 5 BED was, 6 NP-SBJ
*/

(
 (2 IP-MAT-1
 (3 ADVP-TMP (4 ADV +Tan))
 (5 BED was)
 (6 NP-SBJ (7 N pompe) (8 CONJ &) (9 N pryde))
 (10 VAN cast)
 (11 RP down))
 (ID CMKEMPE,2.12))

negating a list

If a list is preceded by !, the entire list is negated. So,

(!*VB*|*HV*|*BE*|*DO*|*MD* iPrecedes NP-SBJ*)

means, "none of these (*VB* or *HV* or *BE* or *DO* or *MD*) iPrecedes NP-SBJ*", and finds
sentences like this:

/~*
& sche wold not consentyn in no wey,
(CMKEMPE,3.34)
*~/

/*
 1 IP-MAT: 2 CONJ &, 3 NP-SBJ
*/

(0
 (1 IP-MAT (2 CONJ &)
 (3 NP-SBJ (4 PRO sche))
 (5 MD wold)
 (6 NEG not)
 (7 VB consentyn)
 (8 PP (9 P in)
 (10 NP (11 Q no) (12 N wey)))
 (13 E_S ,))
 (ID CMKEMPE,3.34))

Top of page
Table of Contents

 The CorpusSearch Command File

Table of Contents

CorpusSearch Home

Contents of this chapter:

Introduction
placement of commands
boolean shorthand
label strings
nodes to ignore in queries

Search control commands
node:
add_to_ignore:
ignore_nodes:
ignore_words:

Output format commands
begin_remark:, end_remark
nodes_only:
print_complement:
print_indices:
remove_nodes:
ur_text_only:

Search specification commands
query: <query specification>
coding_query: <coding specification>
local_frames: <frame specification>
make_lexicon: true
print_only: <pos_label string>
reformat_corpus: true
copy_corpus: true

Comments

Introduction
Every command file must contain a search specification command and ordinary query files must
contain a value for the search control command node:. The extension of a command file is
determined by the search specification command that it contains See below.

placement of commands

The preamble to a command file consists of the search control commands and the output
format commands. These may appear in any order with respect to one another but they must all
appear before the query specfication. Comments may appear anywhere. Many commands have
default values which are used if no value is found in the command file. The query: command itself
is obligatory, as is the node: command.

boolean shorthand

For commands that take a boolean argument, CorpusSearch will accept any of these strings:
"true", "TRUE", "T", "t", or "false", "FALSE", "F", "f".

node label strings

Many commands, including query language clauses, can accept strings of alternative label values as
well as single node labels. These alternatives are separated by the vertical bar character "|" without
any spaces.

nodes to ignore

There are some nodes in the corpus that we usually don't want to consider as part of the structure of
the sentence, for instance, punctuation, line breaks, page numbers, and comments. These and
other nodes should usually also be ignored when a query function counts the number of words in
a constituent. In deciding whether a function is matched by a given structure in the
corpus, CorpusSearch will ignore nodes whose labels are contained in the "ignore-list". If the function
is a word counting function, CorpusSearch ignores the nodes on the "word-ignore-list". Below are
the default versions of the two ignore-lists. Note that traces and empty complementizers (** and 0)
are on the default word-ignore-list but not on the default ignore-list.

ignore_nodes: COMMENT|CODE|ID|LB|'|\"|,|E_S|.|/|RMV:*
ignore_words: COMMENT|CODE|ID|LB|'|\"|,|E_S|.|/|RMV:*|0|**

For instance, if you run this query:

(NP* iPrecedes PP*)

This sentence will be returned:

/*
 1 IP-MAT-SPE: 5 NP-1, 9 PP
*/
/~*
There ar two bretheren beyond the see,
(CMMALORY,15.439)
*~/

(0
(1 IP-MAT-SPE
 (2 NP-SBJ-1 (3 EX There))
 (4 BEP ar)
 (5 NP-1 (6 NUM two) (7 NS bretheren))
 (8 CODE <P_15>)
 (9 PP (10 P beyond)
 (11 NP (12 D the) (13 N see)))
 (14 E_S ,))
(15 ID CMMALORY,15.439))

Notice that NP-1 immediately precedes PP in spite of the intervening node (8 CODE <P_15>). This
is because CODE is on the default ignore-list.

We will sometimes refer to nodes that are not to be ignored as "legitimate" nodes.

Search control commands

node: <node_boundary string>

Required element in every command file of the query type. A query file without a
node specification produces an ERROR. The node specification is a node label or a disjunction
of labels.

The value of node: gives CorpusSearch a node boundary within which to search. The list of labels

gives boundaries that any structure you search for will fall within; for example, IP* would yield all
the basic clauses in the corpus, and $ROOT is the topmost level of every syntactic tree, whatever
its label. In the case of searches on the output of a previous search in which nodes_only is set to
"true", $ROOT refers to the root of the tree, which will have the label of the node boundary.

Whenever you want to consider the entire tree as the domain within which to search use

node: $ROOT

The choice of node boundary determines the following:

● the counting of hits, defined as "number of distinct node boundaries containing the structure";
● what nodes are removed if remove_nodes is true;
● what nodes are printed if nodes_only is true.

To illustrate this, we ran the same query with different node boundaries on a simple file containing
one sentence. First we ran the query with the node boundary, IP*|$ROOT:

node: IP*|$ROOT
query: (NP* iDominates PRO*)

Here's the output; notice that 1 hit is counted because there was one IP* node (1 IP-MAT
containing both NP* nodes:

/~*
and he made them grete chere out of mesure
(CMMALORY,2.13)
*~/

/*
 1 IP-MAT: 3 NP-SBJ, 4 PRO he
 1 IP-MAT: 6 NP-OB2, 7 PRO them
*/

(0
 (1 IP-MAT (2 CONJ and)
 (3 NP-SBJ (4 PRO he))
 (5 VBD made)
 (6 NP-OB2 (7 PRO them))
 (8 NP-OB1 (9 ADJ grete) (10 N chere))
 (11 ADVP (12 ADV out)
 (13 PP (14 P of)
 (15 NP (16 N mesure)))))
 (ID CMMALORY,2.13))

/*
 FOOTER
 source file: CMMALORY
 hits found: 1
 sentences containing the hits: 1
 total sentences searched: 1
*/

Next we ran the query with node boundary NP*:

node: NP*
nodes_only: t
query: (NP* iDominates PRO*)

Here's the output; this time 2 hits are counted, because there are two distinct NP* nodes (3 NP-SBJ
and (6 NP-OB2. Because nodes_only is set to true in this query, only the NP* nodes are printed:

/~*
and he made them grete chere out of mesure
(CMMALORY,2.13)
*~/

/*
 3 NP-SBJ: 4 PRO he
 6 NP-OB2: 7 PRO them
*/

(
 (3 NP-SBJ (4 PRO he))
 (ID CMMALORY,2.13))

(
 (6 NP-OB2 (7 PRO them))
 (ID CMMALORY,2.13))

/*
 FOOTER
 source file: CMMALORY
 hits found: 2
 sentences containing the hits: 1
 total sentences searched: 1
*/

add_to_ignore: (label_list string)

default "" (empty string)

adds given labels to the ignore_list. For instance,

add_to_ignore: **

will tell CorpusSearch to ignore traces for this search. When nodes are ignored, they are not
considered as possible arguments for search functions. For example, ignoring traces means that IPs
with subject traces due to movement of the subject to a position outside the IP will behave in
searches as though they had no subject. Thus, whether a given node type should appear on the
ignore list depends on the purpose of the search.

ignore_nodes: (ignore_list string)

default COMMENT|CODE|ID|LB|'|\"|,|E_S|.|/|RMV:*

tells CorpusSearch what nodes to ignore.

To replace the default ignore-list with your own ignore-list, include this command in your command file:

ignore_nodes: <your_ignore_list>

To tell CorpusSearch not to ignore any nodes, include this command in your command file:

ignore_nodes: null

If you try to search for an item that is on the ignore_list, you'll get an error message. For instance,
this query:

(NP-SBJ* iPrecedes CODE)

generates this message:

WARNING! CODE in y_argument to iPrecedes is on the ignore_list.

 To make the ignore_list empty, add this line to your command file:

 ignore_nodes: null

 To write your own ignore_list, add this line to your command file:

 ignore_nodes:

The program goes ahead and runs as usual, but if you don't get the results you were looking for,
you should probably change the ignore_list.

ignore_words: (word_ignore_list string)

default COMMENT|CODE|ID|LB|'|\"|,|E_S|.|/|RMV:*|0|**

tells CorpusSearch what nodes to ignore in counting words

To replace the default word-ignore-list with your own word-ignore-list, include this command in
your command file:

ignore_words: <your_word_ignore_list>

To tell CorpusSearch not to ignore any nodes in counting words, include this command in
your command file:

ignore_words: null

To add nodes to the word-ignore-list, use

add_to_ignore_words:

The following search functions are governed by the word-ignore-list: DomsWords,
DomsWords<, DomsWords>. All other functions use the main ignore-list.

Output format commands
These commands do not in any way influence the current search. They only give instructions about
how the results of the current search should be printed to the output file. However, because
these commands can cause the output of the current search to take different forms, they may
influence future searches which will take as their input the output of the current search.

begin_remark: (remark string) end_remark

default "" (empty string)

tells CorpusSearch to print user's remark in the output Preface. This is a way for the user to record
a note, for instance to remember the goal of the search.

For instance, the command file "pro-obj.q" contains this command:

begin_remark:
 pronoun objects

end_remark

which is printed in the output preface like this:

/*
 PREFACE: regular output file.
 CorpusSearch copyright Beth Randall 1999.
 Date: Wed Nov 03 19:12:03 EST 1999

 command file: pro-obj.q
 input file: ipmat-2vb.out
 output file: pro-obj.out

 remark:
 pronoun objects

 node: IP*
 query: (NP-OB* iDominates PRO)
*/

nodes_only: (boolean true or false)

default false

If true, CorpusSearch prints out only the nodes that contain the structure described in "query".

If false, CorpusSearch prints out the entire sentence that contains the structure described in "query".

For instance, suppose you have this query:

node: ADVP*

nodes_only: t
query: (ADVP* iDominates ADVP*)

Here's what a piece of the output looks like with nodes_only true.

/~*
certayn and wit-owte doute, Ihon is is name.
(CMAELR3,45.574)
*~/

/*
 2 ADVP: 3 ADVP
*/

((ADVP
 (ADVP (ADV certayn))
 (CONJP (CONJ and)
 (PP (P wit-owte)
 (NP (N doute))))
 (, ,))(ID CMAELR3,45.574))

And here's the same piece of output with nodes_only false:

/~*
certayn and wit-owte doute, Ihon is is name.
(CMAELR3,45.589)
*~/

/*
 2 ADVP: 3 ADVP
*/

(
(IP-MAT
 (ADVP
 (ADVP (ADV certayn))
 (CONJP (CONJ and)
 (PP (P wit-owte)
 (NP (N doute)))))
 (, ,)
 (NP-OB1 (NPR Ihon))
 (BEP is)
 (NP-SBJ (PRO$ is) (N name))
 (E_S .))
(ID CMAELR3,45.589))

print_complement: (boolean true or false)

default false

In the normal case CorpusSearch prints as output only nodes or tokens that match the query.
Setting print_complement to true causes CorpusSearch to print not only the matching tokens (in
the regular output file, extension .out), but also all the tokens that don't match, in a separate file
called the complement file (extension .cmp). Thus, print_complement is a form of NOT applied
to queries. Generally print_complement should be used on the output of a previous search that
has narrowed down the possibilities to some set that can be meaningfully divided; using it on
corpus files will generally result in a completely meaningless set of tokens.

Examples: the following query could be used on an output file containing all IPs with objects to
divide the IPs into two sets: those with two objects (in the .out file) and those with one (in the .cmp
file). The first example is from the regular output file and matches the query, that is, it has two
objects. The second example is from the complement file and does not match the query; it has only
one object.

print_complement: t
node: IP*
query: ((IP* iDoms [1]NP-OB*)
AND (IP* iDoms [2]NP-OB*))

from the regular output file:

/~*
And there is no knyght now lyvynge that ought to yelde God so grete thanke os
ye,
(CMMALORY,655.4474)
*~/
/*
1 IP-SUB-SPE: 6 NP-OB2, 8 NP-OB1
1 IP-SUB-SPE: 8 NP-OB1, 6 NP-OB2
*/

(0 (1 IP-SUB-SPE (2 NP-SBJ *T*-2)
 (3 MD ought)
 (4 TO to)
 (5 VB yelde)
 (6 NP-OB2 (7 NPR God))
 (8 NP-OB1 (9 ADJP (10 ADVR so) (11 ADJ grete))

 (12 N thanke)
 (13 PP (14 P os)
 (15 NP (16 PRO ye)))))
 (ID CMMALORY,655.4474))

from the complement file:

/~*
The kynge lyked and loved this lady wel,
(CMMALORY,2.12)
*~/

(0 (1 IP-MAT (2 NP-SBJ (3 D The) (4 N kynge))
 (5 VBD (6 VBD lyked) (7 CONJ and) (8 VBD loved))
 (9 NP-OB1 (10 D this) (11 N lady))
 (12 ADVP (13 ADV wel))
 (14 E_S ,))
 (15 ID CMMALORY,2.12))

print_indices: (boolean true or false)

default false

tells CorpusSearch whether or not to print indices in the output.

Indices start at 0 and are used to label every node in the tree. CorpusSearch uses indices to
distinguish, for instance, between several different NP nodes in the same output structure.

Here's a piece of output structure with indices:

 (10 NP-OB1 (11 NPR Morgan)
 (12 NPR le)
 (13 NPR Fay)

Here's how it looks without indices:

 (NP-PRN (NPR Morgan)
 (NPR le)
 (NPR Fey)))

remove_nodes: (boolean true or false)

default false

removes subtrees whose root is of the same syntactic category as the node boundary embedded within
a instance of that node boundary. "Remove_nodes" thus removes recursive structure. If the
removed subtree matches the query, it will appear as a separate output token later in the output file.
If the removed subtree does not contain the searched-for structure, it is discarded and replaced with
a label indicating what has been removed.

The purpose of this feature is to make it easier to search output. For instance, if you were looking for
IP nodes containing a certain structure, remove_nodes will ensure that your output contains only
IP nodes with that structure, and no other IP nodes.

CorpusSearch uses the following algorithm to find the syntactic category of a node: Start with the
node boundary label. If that label contains any hyphens, the node's syntactic category is the substring
of the label up to the leftmost hyphen, with a '*' tacked on. If the node boundary label does not contain
a hyphen, the syntactic category is simply the label with a '*' tacked on, unless the label already has one.

Thus, if the node boundary label is IP-PRN*, the node category is IP*.

Consider the following command file, in which remove_nodes is set to true, and its effect on the
output below:

remove_nodes: true
query: (NP-OB* iDoms PRO)

Output:

/~*
'And I shall defende the,' seyde the knyght.
(CMMALORY,39.1264)
*~/

/*
 1 IP-MAT-SPE: 8 NP-OB1, 9 PRO the
*/

 (0 (1 IP-MAT-SPE (2 ' ')
 (3 CONJ And)
 (4 NP-SBJ (5 PRO I))
 (6 MD shall)
 (7 VB defende)
 (8 NP-OB1 (9 PRO the))
 (10 , ,)
 (11 ' ')
 (12 IP-MAT-PRN RMV:seyde_the_knyght...)
 (13 E_S .))
 (ID CMMALORY,39.1264))

The structure of sub-sentence "seyde the knyght" has been removed from the parsed sentence
and replaced with the symbol RMV:<rmv_string>, where rmv_string stands for a string of (up to)
the first three words (leaf nodes) of the removed material and serves as a reminder of what has
been removed. A further search on this output will be a search only on IP* nodes that contain a
pronoun object, and on no other nodes.

Search specification
Every command file must contain a search specification, which instructs CorpusSearch as to what
action to carry out. The search specification string must follow the preamble of search
control commands and output format commands. The most common search specification, by far,
is query:, used for searching a corpus.

ur_text_only: (boolean true or false)

default false

prints only the text of the tokens that match the query, suppressing printing of the labeled
bracketing and associated information.

query: <query specification>

Queries must follow the syntax of the CorpusSearch query language. Every command files
containing queries must bear the extension .q.

coding_query: <coding specification>

Coding query syntax is described in the chapter on coding. Every command file containing
coding queries must bear the extension .c.

local_frames: <frame specification>

See the chapter on local frames for a description of this option.

make_lexicon: true

See the chapter on building a lexicon for a description of this option.

print_only: <pos_label string>

This option was designed for use on a file that contains coding strings produced by coding queries.
To create an output file with only the coding strings use the following search specification:

print_only: CODING

The resultant output file will bear the extension .ooo. Please note that his feature does not work
on output files of prior queries in which the nodes of the parse were indexed.

In theory, you could substitute a part of speech label for CODING, although if you wanted a list of,
for instance, all the nouns in your file, you would probably be better off using the make_lexicon feature.

reformat_corpus: true

This takes as input a corpus file, and outputs the same file in the same format as CS would output
from a search. This is useful, for instance, if you need to follow up with unix "diff" to compare
search output with an original corpus file. The output file of "reformat_corpus" bears the extension .fmt.

copy_corpus: true

See the chapter on automated corpus revision for a description of this option.

Comments
Comments may be added anywhere to the command file or to files of parsed sentences that serve
as input to CS. The program uses the following delimiters for such comments. Comment lines begin
with "//" and block comments appear between "/*" and "*/". Unlike remarks, comments are not
printed to the search output file.

For input files, but not for command files, you can also define custom comment delimiters. Add
the following commands to the command file preamble or to the preferences file, followed by
the desired delimiter strings.

For a line comment delimiter, add corpus_line_comment:

For block comment delimiters, add corpus_comment_begin: and corpus_comment_end:

Top of page
Table of Contents

 Understanding CorpusSearch Output

Table of Contents

CorpusSearch Home

Contents of this chapter:

general form of the output
a typical output file
preface
header
result block with output sentence
footer
hits/tokens/total
summary block
using nodes_only and remove_nodes

general form of the output

The extension of an output file will be .out. Output files have this general form:

1 per output
file

1 per input
file 1 per output sentence

Preface Header ur_text sentence
Summary Footer result block

parsed sentence

Since the output file can become input to a subsequent search, everything except parsed sentences
is surrounded by comment markers /* and */ (the ur_text block has slightly different markers).

a typical output file

As an example, we will walk through a typical output file. The query was designed to search for
inverted pronoun subjects, that is, pronoun subjects that appear after the tensed verb.

To make this example easier to follow, the search was done with the default value (false)
for "nodes_only."

We will discuss "nodes_only" and "remove_nodes" below.

preface

/*
 PREFACE:
 CorpusSearch copyright Beth Randall 2004.
 Date: Sun Apr 30 07:05:51 EDT 2004

 command file: under.q
 output file: under.out

 remark: this query searches for inverted pronoun subjects.

 node: IP*
 print_indices: true

 query: ((((NP*|ADJP*|ADVP*|PP* iPrecedes *MD|*HVP|*HVD|*DOP|*DOD|*BEP|*BED|
*VBP|*VBD)
 AND (NP*|ADJP*|ADVP*|PP* iDominates !*T*))
 AND (*MD|*HVP|*HVD|*DOP|*DOD|*BEP|*BED|*VBP|*VBD iPrecedes NP-SBJ*))
 AND (NP-SBJ* iDominates PRO|MAN))
*/

The preface begins with a copyright declaration and the date and time of the search.

The names of the command file and output file are listed. If this search had been performed using
an output file as input (instead of a corpus file), the name of the output-as-input file would also
have been listed in this block. But because the input file is a corpus file, the header and summary
blocks contain all the necessary information (for more on searching output files, see below).

The remark was found in the command file. It serves as a reminder of the purpose of the query.

The beginning of the query,

 ((NP*|ADJP*|ADVP*|PP* iPrecedes *MD|*HVP|*HVD|*DOP|*DOD|*BEP|*BED|
*VBP|*VBD)
 AND (NP*|ADJP*|ADVP*|PP* iDominates !*T*))

requires a constituent (NP*|ADJP*|ADVP*|PP*) which immediately precedes the tensed verb (*MD|
*HVP|*HVD|*DOP|*DOD|*BEP|*BED|*VBP|*VBD). The constituent is required not to have a trace (*T*)
(a placeholder for a word which would appear in that place under some circumstances, but in
fact appears elsewhere in this particular sentence.) This requirement was put in to preclude
questions (such as, "Kepte he his fadir scheep full mekly?"), where there is no constituent before
the inverted pronoun subject other than the tensed verb. In Middle English, there must be
one constituent before the tensed verb in statements, as the first two lines of the query describe.

The last two lines of the query,

 AND (*MD|*HVP|*HVD|*DOP|*DOD|*BEP|*BED|*VBP|*VBD iPrecedes NP-SBJ*))
 AND (NP-SBJ* iDominates PRO|MAN))

describe the tensed verb (*MD|*HVP|*HVD|*DOP|*DOD|*BEP|*BED|*VBP|*VBD) which precedes the
subject noun phrase (NP-SBJ*), which itself immediately dominates a pronoun ("PRO|MAN") (that is,
the subject is a pronoun.)

header

/*
 HEADER:
 source file: cmcapchr.m4.psd
*/

Here, the source file is listed as its name appears in the corpus directory. If this had been an output
file, the source file would have been listed as its name appears in the ID node of each sentence, that
is, CMCAPCHR. (for more on searching output files, see below).

result block with output sentence

Here's an example of an output sentence, first presented as the original text, followed by the
result block, which lists the nodes relevant to the query, followed by the sentence in its parsed form:

/~*
His fadir scheep kepte he ful mekly;
(CMCAPCHR,32.13)
*~/

/*
 1 IP-MAT: 2 NP-OB1, 7 VBD kepte, 6 N scheep, 8 NP-SBJ, 9 PRO he
*/

(0
 (1 IP-MAT
 (2 NP-OB1 (3 NP-POS (4 PRO$ His) (5 N$ fadir))
 (6 N scheep))
 (7 VBD kepte)
 (8 NP-SBJ (9 PRO he))
 (10 ADVP (11 ADVR ful) (12 ADV mekly))
 (13 E_S ;))
 (ID CMCAPCHR,32.13))

The indices on the nodes of the labeled bracketing are intended to facilitate seeing how the token
comes to match the query. They are present whenever the query preamble contains the
line "print_indices: true."

Notice that the original text is surrounded by special markers, "/~*" and "*~/". When a search is run
on the output file, CorpusSearch will find and record this block of data as the original text of the
output sentence. In this way the entire original text is conserved, even when only bits and pieces of
the original parse tree for the sentence appear in the output.

The first item in the result block is the boundary node (in this case, 1 IP-MAT), which match the value
of the "node: " line of the command file. The boundary node is followed by a colon to separate it
from the rest of the list, which gives the structures that correspond to the "query: " line of the
command file. The list of indices and structures is structured so that no node is reported more
than once.

For some queries, there may be many nodes that fit one search-function argument. In these
cases CorpusSearch always reports the last legitimate fitting node. For instance, look at this part of
the query:

(NP*|ADJP*|ADVP*|PP* iDominates !*T*)

In the sentence above, (2 NP-OB1 iDominates the following nodes, where neither (3 NP-POS nor (6
N scheep is *T*:

 (3 NP-POS (4 PRO$ His) (5 N$ fadir))
 (6 N scheep)

so it is the last node, (6 N scheep), that is reported in the result block.

The parsed version of the output sentence is indented to show the structure of the tree. Sisters have
the same indentation (for instance, 2 NP-OB1 and 7 VBD kepte.) Daughters are indented further
than their mothers. If a node dominates only leaves, they are printed on the same line to save space.

footer

/*
FOOTER
 source file, hits/tokens/total
 cmcapchr.m4.psd 220/220/4175
*/

The footer gives the statistics for hits, tokens, and total as found in that input file. The same
information appears again as one line of the summary block.

hits/tokens/total

CorpusSearch reports these statistics:

hits
number of distinct boundary nodes contaning the searched-for structure.

tokens
number of independent parsed objects in which hits occurred.

total
total number of independent parsed objects searched.

When you're searching a corpus file, most "tokens" are "matrix sentences", though some corpora
have fragments and other material as independent tokens. In searches of corpus files it is very
common to have "hits" greater than "tokens", since one matrix sentence may contain many
distinct boundary nodes.

But suppose you follow these steps:

1. Run a search on the corpus with "nodes_only" and "remove_nodes" set to "true." Call the output of this
search "1.out".

2. Now, run a second search on "1.out" with the same boundary node as used in the first search. Call the
output of this second search "2.out".

In "2.out", "hits" and "tokens" will be the same number, because each token in "1.out" contained
exactly one boundary node and thus can contain at most one hit in the second search.

summary block

/*
SUMMARY:
source files, hits/tokens/total:
 cmaelr4.m4.psd 46/46/766
 cmcapchr.m4.psd 220/220/4175
 cmcapser.m4.psd 12/12/91
 cmedmund.m4.psd 2/2/300
 cmfitzja.m4.psd 14/14/228
 cmgregor.m4.psd 14/14/2631
 cminnoce.m4.psd 6/6/208
 cmkempe.m4.psd 203/202/3851
 cmmalory.m4.psd 214/213/4995
 cmreynar.m4.psd 36/36/547
 cmreynes.m4.psd 0/0/245
 cmsiege.m4.psd 6/6/731
whole search, hits/tokens/total
 773/771/18772
*/

The summary block gives the same information as the footer blocks for each input file, but
brought together in one place. This summary block was produced by a search on all files in the
Middle English corpus (PPCME2) whose titles contain "m4", meaning they are from the
fourth chronological period (1420 - 1500).

using nodes_only and remove_nodes

Consider this query file, called ipmat-2vb.q:

begin_remark:
 This query searches for matrix clauses which contain a
 subject and at least two verbs. The subject precedes
 both verbs.
end_remark

nodes_only: t
remove_nodes: t
node: IP-MAT*
query: (((((IP-MAT* iDoms NP-SBJ*)
AND (NP-SBJ* precedes *MD|*HVP|*HVD|*DOP|*DOD|*BEP|*BED|*VBP|*VBD))
AND (NP-SBJ* precedes VB|VAN|VBN|HV|HAN|HVN|DO|DAN|DON|BE|BEN))
AND (*MD|*HVP|*HVD|*DOP|*DOD|*BEP|*BED|*VBP|*VBD iDoms ![1]**))
AND (VB|VAN|VBN|HV|HAN|HVN|DO|DAN|DON|BE|BEN iDoms ![2]**))

Because remove_nodes and nodes_only are set to "true," the output will print only the boundary
nodes containing the structure, and irrelevant boundary nodes will be removed. The purpose of
these settings would be to ensure that subsequent searches are conducted only on the matrix
clauses that contain a subject preceding two verbs. Here's a sample output sentence: in Modern
English, this sentence would be: "He would have told you more if you had allowed him to."

/~*
and more he wolde a tolde you and $ye wolde a suffirde hym.
(CMMALORY,35.1106)
*~/
/*
 1 IP-MAT-SPE: 5 NP-SBJ, 7 MD wolde, 8 HV a
 1 IP-MAT-SPE: 5 NP-SBJ, 7 MD wolde, 9 VBN tolde
*/

(0 (1 IP-MAT-SPE (2 CONJ and)
 (3 NP-OB1 (4 QR more))
 (5 NP-SBJ (6 PRO he))
 (7 MD wolde)
 (8 HV a)
 (9 VBN tolde)
 (10 NP-OB2 (11 PRO you))
 (12 PP (13 P and)
 (14 CP-ADV (15 C 0)
 (IP-SUB RMV:$ye_wolde_a...)))
 (24 E_S .))(ID CMMALORY,35.1106))

Notice that the IP-SUB clause, "$ye wold a suffirde hym", has been removed.

Suppose we run this output through a search for pronoun objects, using this query file, called "pro-
obj.q":

begin_remark:
pronoun objects
end_remark

add_to_ignore: **
query: (NP-OB* iDoms PRO)

The 35.1106 sentence shows up again, because it has a pronoun object "you":

/~*
and more he wolde a tolde you and $ye wolde a suffirde hym.
(CMMALORY,35.1106)
*~/
/*
 1 IP-MAT-SPE: 10 NP-OB2, 11 PRO you
*/

 (0 (1 IP-MAT-SPE (2 CONJ and)
 (3 NP-OB1 (4 QR more))
 (5 NP-SBJ (6 PRO he))

 (7 MD wolde)
 (8 HV a)
 (9 VBN tolde)
 (10 NP-OB2 (11 PRO you))
 (12 PP (13 P and)
 (14 CP-ADV (15 C 0)
 (16 IP-SUB RMV:$ye_wolde_a...)))
 (17 E_S .))(ID CMMALORY,35.1106))

Notice that the results block describes one structure,

1 IP-MAT-SPE: 10 NP-OB2, 11 PRO you

This structure will be counted as one hit in the final summary block.

Now suppose we run the same series of searches, but this time we change "nodes_only" to "false."

nodes_only: f

When "nodes_only" is false, "remove_nodes" is automatically false.

Here's how the 35.1106 sentence looks after running ipmat-2vb.q with nodes_only and
remove_nodes false:

/~*
and more he wolde a tolde you and $ye wolde a suffirde hym.
(CMMALORY,35.1106)
*~/
/*
 1 IP-MAT-SPE: 5 NP-SBJ, 7 MD wolde, 8 HV a
 1 IP-MAT-SPE: 5 NP-SBJ, 7 MD wolde, 9 VBN tolde
*/

(0
(1 IP-MAT-SPE (2 CONJ and)
 (3 NP-OB1 (4 QR more))
 (5 NP-SBJ (6 PRO he))
 (7 MD wolde)
 (8 HV a)
 (9 VBN tolde)
 (10 NP-OB2 (11 PRO you))
 (12 PP (13 P and)
 (14 CP-ADV (15 C 0)
 (16 IP-SUB
 (17 NP-SBJ (18 PRO $ye))
 (19 MD wolde)
 (20 HV a)
 (21 VBN suffirde)
 (22 NP-OB1 (23 PRO hym)))))
 (24 E_S .))
(25 ID CMMALORY,35.1106))

Notice that the clause "$ye wolde a suffirde hym" is printed out in full.

Now we run pro-obj.q on this output. Here's the 35.1106 sentence in the output of this search:

/~*
and more he wolde a tolde you and $ye wolde a suffirde hym.
(CMMALORY,35.1106)
*~/

/*
 1 IP-MAT-SPE: 10 NP-OB2, 11 PRO you
 16 IP-SUB: 22 NP-OB1, 23 PRO hym
*/

(0
(1 IP-MAT-SPE (2 CONJ and)
 (3 NP-OB1 (4 QR more))
 (5 NP-SBJ (6 PRO he))
 (7 MD wolde)
 (8 HV a)
 (9 VBN tolde)
 (10 NP-OB2 (11 PRO you))
 (12 PP (13 P and)
 (14 CP-ADV (15 C 0)
 (16 IP-SUB
 (17 NP-SBJ (18 PRO $ye))
 (19 MD wolde)
 (20 HV a)
 (21 VBN suffirde)
 (22 NP-OB1 (23 PRO hym)))))
 (24 E_S .))
(25 ID CMMALORY,35.1106))

Notice that here the results block contains two different structures,

1 IP-MAT-SPE: 10 NP-OB2, 11 PRO you
16 IP-SUB: 22 NP-OB1, 23 PRO hym

The structure

16 IP-SUB: 22 NP-OB1, 23 PRO hym

is reported in this case because remove_nodes was false in the previous search. The pronoun
object "hym" was found in a subordinate clause, not the matrix clause that was of interest to the
last search.

Because the structures occur in two distinct boundary nodes (1 IP-MAT-SPE and 16 IP-SUB), this
will count as two hits in the summary block, in contrast to the one hit that was found
when remove_nodes was true. This explains why, after using "remove_nodes: true" in the initial search,
a second search for pronoun objects finds fewer hits than when the initial search was conducted
with "remove_nodes: false."

Here's the summary block from the "remove_nodes: true" version:

/*
SUMMARY:
source files, hits/tokens/total:
 CMMALORY 177/176/875
whole search, hits/tokens/total
 177/176/875
*/

And here's the summary block from the "remove_nodes: false" version:

/*
SUMMARY:
source files, hits/tokens/total:
 CMMALORY 290/249/875
whole search, hits/tokens/total
 290/249/875

*/

Top of page
Table of Contents

 Searching for Words and Labels

Table of Contents

CorpusSearch Home

Contents of this chapter:

labels and words
string variations

words and labels

"Labels" are the tags inserted by the annotators who prepared the corpus (e.g., "IP", "CONJ", "N".)
"Words" are the original words of the text that was parsed. Every node in the sentence-tree has a
label, and in the leaf nodes the label is paired with a word. CorpusSearch can conduct searches on
labels or words or combinations of the two.

string variations

CorpusSearch uses case-sensitive character-by-character string matching to match search-
function arguments to strings found in the input. Therefore, spelling and upper-case/lower-
case variations must be described explicitly (usually with an argument list.) For instance, this
query searches for a complementizer whose associated text is "that" or "That":

(C iDominates that|That)

and finds sentences such as this:

/~*
and he shalle do yow remedy, that youre herte shal be pleasyd. '
(CMMALORY,3.47)
*~/

/*
 12 CP-ADV: 13 C that
*/

(
 (12 CP-ADV (13 C that)
 (14 IP-SUB
 (15 NP-SBJ (16 PRO$ youre) (17 N herte))
 (18 MD shal)
 (19 BE be)
 (20 VAN pleasyd)))
 (ID CMMALORY,3.47))

Top of page
Table of Contents

 Search Tips

Table of Contents

CorpusSearch Home

Contents of this chapter:

about this chapter
using definition files
using *
the "exists" function
same instance
ignoring certain nodes
searching for traces
finding non-pronominal NPs
restricting searches to a single IP
counting words and remove_nodes

about this chapter

This chapter gives tips on a number of common problems and errors that arise when
using CorpusSearch. The reader is assumed to have a general familiarity with the rest of
the CorpusSearch manual. Many of the example queries assume a standard definition file
containing definitions for at least finite_verb and non_finite_verb.

using definition files

The following are useful definitions to include in a definition file for the Middle and Early Modern
English corpora:

finite_verb: *MD|*HVP|*HVD|*DOP|*DOD|*BEP|*BED|*VBP|*VBD
non_finite_verb: *VB|V*N|*HV|H*N|*DO|D*N|*BE|BEN
non-pronominal_NP: *N*|D*|Q*|ADJ*|CONJ*|*ONE*|*OTHER*|CP*

A common error is to forget to use the define command to specify the definition file when
using definitions. No error message will be generated, but the search will result in no output.

using *

Be liberal in using *. Using NP-SBJ as a search term will only find a subset of subjects. Some subjects
are resumptive (NP-SBJ-RSP), some are coindexed to a clause, or to trace in a lower clause (NP-SBJ-
1), some may have other additional labels. Using NP-SBJ* will find all the subjects labelled in this
way, no matter what might be added on to the end of the label. In general, only leave off the * if you
are sure you don't want it.

When you want to refer to all the labels referred to by, for instance, ADVP*, except one, you have to use
a list and list all the options you are interested in, as for instance ADVP|ADVP-LOC|ADVP-TMP (this
omits ADVP-DIR which would be included in ADVP*). This is what definition files are for; you only have
to write the complex disjunction once.

Note that if you want to refer to an actual * in a search (all traces start with *), escape it with a
backslash \ . The following query finds subjects which dominate traces. The first * in ** is
escaped and thus refers to an actual *, while the second is not and thus matches anything that
follows the *; this will match, for instance, *con*, *exp*, *T-1* and others.

query: (NP-SBJ* iDoms **)

the "exists" function

A common error is to overuse the exists function. Using a search term forces that term to exist in
any hit; it is not necessary to specify this separately. Thus the following is an inefficient query,
although it is not ill-formed.

query: ((NP-SBJ* exists)
AND (IP* iDoms NP-SBJ*))

The second clause of the query alone will accomplish the same thing more quickly and efficiently.

same instance

Same instance works by literal string match of arguments to functions. Thus NP-SBJ does not match
NP-SBJ*, and MD|VBD does not match VBD|MD; that is, in neither case would same instance be
invoked between the two terms.

When two search arguments do match, they are forced to apply to the same node. Thus two uses of
NP-OB* will require that, if for instance, NP-OB2 is found as an instance of the first NP-OB*, then
the next use of NP-OB* will also apply to the same NP-OB2 (not, for instance, an NP-OB1 which may
also be in the vicinity).

When two search terms do not match but might refer to the same node, as for instance, NP-SBJ and
NP-SBJ*, or MD|VBD and VBD|MD, same instance is not forced, but neither is it ruled out; that is, the
two label strings in the query may or may not wind up referring to the same node in the corpus.

In order to force non-same instance, use index numbers. [1]NP-SBJ* and [2]NP-SBJ* cannot apply
to the same NP-SBJ* node.

A common error is to forget that impossible (to the linguist) cases of same instance will nonetheless
be interpreted this way by CorpusSearch. Thus, for instance, a query such as the following will
produce no results:

query: ((NP-SBJ* iDoms PRO)
AND (NP-OB1* iDoms PRO))

Although it is impossible for these PROs to refer to the same node, since they are dominated by
different nodes, CorpusSearch will assume they do, and consequently will find no matches. Traces
and zeros also need to be differentiated, as in the following:

query: ((MD iDoms [1]!**)
AND (VB iDoms [2]!**))

or

query: ((WNP iDoms [1]0)
AND (C iDoms [2]0))

An easier way to accomplish the former is to add traces to the ignore list.

ignoring certain nodes

A default "ignore list" is supplied with CorpusSearch. It contains such things as punctuation and
various meta labels that are not part of the text. If you want to search for punctuation, for instance,
or line breaks, then you must provide your own ignore list which does not include the items you want
to be able to access.

Although the ignore list is primarily a way to avoid non-text annotations, linguistic labels can also
be added to the ignore list, in which case CorpusSearch will simply act as if they are not there. Thus
for instance, if you add NEG to the ignore list, you can find cases in which nothing but possibly
negation intervenes between the subject and the finite verb.

add_to_ignore: NEG
query: (NP-SBJ* iPrecedes finite_verb)

This will find the following two sentences:

Arthur loves Guinevere
Arthur ne loves Guinevere

but not:

Arthur madly loves Guinevere

Using the ignore list is also helpful in looking for V2. In many cases, the verb is not technically
the second node in the IP because of initial conjunction. Adding CONJ (and possibly some other
things, such as INTJ*, and NP-VOC) to the ignore list will solve this problem (or at least reduce it).
The query below will find all the following:

The sword desired Lancelot
And the sword desired Lancelot
Gramercy, Arthur, the sword desired Lancelot

add_to_ignore: INTJ*|NP-VOC|CONJ
query: ((IP* iDomsNumber 1 NP-OB*)
AND (IP* iDomsNumber 2 finite_verb))

searching for traces

Traces (which all start with * in the PPCME2) are treated as text by CorpusSearch, and thus can
be searched for. In order to differentiate the * which means "match anything" from the * that is part
of the text of a trace, use * to refer to the latter. The string ** will match any trace.

In the more common case, in which you want to simply ignore traces, add them to the ignore list
as follows:

add_to_ignore: **

This means that any node that contains a trace will not be found. Thus a query such as (NP*
exists) will not find any NPs which contain only traces.

finding non-pronominal NPs

Do not search for non-pronominal NPs with the following query:

(NP* iDoms !PRO)

This will also eliminate cases like Robin and me and he and I, since these contain a PRO. Instead use
the non-pronominal_NP definition.

restricting searches to a single IP

CorpusSearch requires that you specify a node boundary within which to search. The node
boundary includes everything dominated by the node, no matter how deeply embedded. Thus, if IP*

is specified as the node boundary and an IP contains a subordinate clause IP, the contents of
the embedded subordinate clause are also within the node. A common error is to write a query such as

query: ((IP* iDomsNumber1 NP-OB*)
AND (finite_verb iPrecedes NP-SBJ*))

with the intent of finding V2 clauses with a topicalized object. The first function looks for IPs
which have an object as the first element; the second for a finite verb immediately preceding the
subject. This query will, in fact, find V2 clauses with a topicalized object, but it may also find some
other clauses as well. It will find (if there are any) IPs which contain one clause in which the first
element is an object, and another different clause within the same node boundary in which the
finite verb precedes the subject. Either, one of these clauses may be the main clause and the other
a embedded clause, or, they may both be embedded IPs within a dominating IP.

There are two ways to avoid this error and force all parts of the query to apply within the same IP.

1. Make use of the built-in same instance feature. Same instance means that if you use a node label in the
query more than once in exactly the same form, CorpusSearch assumes that you intend each use to
apply to the same instance of that node. Same instance applies across query clauses conjoined by AND.
You can use same instance to keep all the queries inside the same IP (for instance, or any other node)
by "tying" one term of the query to the node, as in the first element of the query above, and then
making sure that in every subsequent search function, either that "tied" term or the node is used. For
instance, we could fix the query above, by writing it as:

query: (((IP* iDomsNumber1 NP-OB*)
AND (NP-OB* iPrecedes finite_verb))
AND (finite_verb iPrecedes NP-SBJ*))

or alternatively:

query: (((IP* iDomsNumber1 NP-OB*)
AND (NP-OB* iPrecedes finite_verb))
AND (finite_verb iPrecedes NP-SBJ*))

The repeated instances of NP-OB* in the first example and IP* in the second refer to the same instance
of NP-OB* and IP* respectively, thus forcing all parts of the query to be immediately dominated by the
node.

2. The second solution is to use the remove_nodes output format option. The default setting for
remove_nodes is false, so to activate it you must include the line remove_nodes: t in the query file
preamble. Removing nodes removes any embedded structure whose root matches the specified
boundary node. When IP* is specified, all embedded IPs will be removed. If the boundary node is set
as NP*, all NPs embedded within another NP will be removed. Note that all that is required for a
match is that the syntactic category of the label (the part before the hyphen) matches. Thus, if the
node is IP-MAT*, any node whose label starts with IP will be removed, including in this case, IP-SUB,
IP-SMC, IP-PPL, etc. Thus, for instance, you cannot set the boundary node as IP-MAT* and not have
IP-SUBs removed. When "remove nodes" is in force, any node that doesn't match the query is removed
completely from the output; any embedded node that matches the query is removed from its matrix and
printed below it.

To solve our problem the "remove nodes" way, we would first create a file with only single clauses with
all embedded nodes removed, by a query such as

remove_nodes: t
query: (IP* iDoms finite_verb)

This query will produce a file in which every token is an IP containing a finite verb with all embedded IPs
removed. The following query:

query: ((IP* iDomsNumber1 NP-OB*)
AND (finite_verb iPrecedes NP-SBJ*))

can then be used on the output of the first query and will yield only the cases intended. (But note that
this query is not actually going to produce all V2 clauses with a topic object anyway, since many such
clauses begin with a conjunction or other introductory type word and thus the object will be the second
element in the IP*; for a solution to this problem, see ignoring certain nodes).

counting words and

remove_nodes

Note that if you have remove_nodes turned on, the string RMV:<rmv_string>, counts as text so you
can search for it. It will not, however, be counted as a word when doing word counts (like traces,
which likewise are not counted). But, if you count the number of words in a node that contains
RMV:<rmv_string>, you will, of course, get the wrong answer, since RMV:<rmv_string> replaces a
clause full of words. In order to avoid this result, either don't use remove_nodes when counting, or,
use a query like the following which won't count any node containing RMV:<rmv_string>.
Nodes containing RMV:<rmv_string> can then be counted separately.

query: (((IP* iDoms NP-OB*)
AND (NP-OB* domsWords3))
AND (NP-OB* doms !RMV:*))

Another way to do this is to add RMV:* to the ignore list and then, as before, count the nodes
containing RMV:* separately.

add_to_ignore: RMV:*
query: ((IP* iDoms NP-OB*)
AND (NP-OB* domsWords3))

Top of page
Table of Contents

 Using Definition Files

Table of Contents

CorpusSearch Home

Contents of this chapter:

What are definition files for?
definition file example
query file example
recursive definitions
output file example

What are definition files for?

Definition files are an optional convenience for the CorpusSearch user. If you find yourself writing
the same long argument list for many different queries, you would probably benefit from having
a definition file. A definition file allows you to assign a label to a list of arguments. When you write
a query, you can refer to this label instead of writing out the argument list.

definition file example

Here's an example of a definition file written by Ann Taylor. The name of the file is "Ann.def".
Definition file names must always have the extension .def.

// definition file written by Ann Taylor.

non_finite_verb: *VB|V*N|*HV|H*N|*DO|D*N|*BE|BEN

finite_verb: *MD|*HVP|*HVD|*DOP|*DOD|*BEP|*BED|*VBP|*VBD

query file example

Here's an example of a query file that refers to the definition file:

define: Ann.def

query: (finite_verb precedes non_finite_verb)

The first line, "define: Ann.def", tells CorpusSearch where to find the definitions of "finite_verb"
and "non_finite_verb". Without this line, "finite_verb" and "non_finite_verb" will not be replaced by
their definitions.

recursive definitions

Terms may be defined recursively, that is, one term may be a list of other terms. To make a
recursive reference use the dollar sign "$". Here's an example of a recursive definition file:

first: there's|a|somebody|I'm
second: longing|to|see
third: I|hope|that|he
fourth: turns|out|to|be
fifth: someone|to|watch|over|me

first2: $first|$second
next3: $third|$fourth|$fifth

whole: $first2|$next3

Notice that the one term "whole" refers to the entire stanza.

output file example

Here's the preface from an output file resulting from "def.q".

/*
 PREFACE:
 CorpusSearch copyright Beth Randall 2000.
 Date: Thu Apr 13 08:57:07 EDT 2000

 command file: def.q
 output file: def.out

 definition file: Ann.def
 node: IP*
 query: (*MD|*HVP|*DOP|*DOD|*BEP|*BED|*VBP|*VBD precedes
 *VB|V*N|*HV|H*N|*DO|D*N|*BE|BEN)
*/

Notice that the query appears in two forms: first in the shorthand form found in the command file,
and second in its expanded form after the installation of the definitions. The second form of the query
is the one that CorpusSearch uses for the search. If you still see your definition labels in the second
form of the query, it means that the definitions were not installed. You may have forgotten to
put "define: <def.file>" in your command file, or perhaps misspelled the labels.

Top of page
Table of Contents

 Using Preference Files

Table of Contents

CorpusSearch Home

Contents of this chapter:

What are preference files for?
a preference file example
an output file example

What are preference files for?

Preference files are a way for the CorpusSearch user to set custom default values. If you find
yourself continually copying the same information into your query files, you would most likely
benefit from a preference file.

CorpusSearch sets its own default values for certain variables but if a preference file exists,
the commands contained in it override the defaults set within CorpusSearch. If the current query
file contains commands of the same type as the preference file, the commands in the query file
override those in the preference file. So, for instance, CorpusSearch sets the command line
comment delimiter "//", your preference file might set it to "/!/", and your query file might set it to "/
>". It is the last value that CorpusSearch will use as the comment delimiter.

a preference file example

Here's an example of a basic preference file, designed for searching the Penn Korean TreeBank
(Han, Han, and Ko (2001)). The name of the file is "korean.prf". Preference file names must always
have the extension .prf and must be stored in the same directory as the query file.

// a preference file for the Korean corpus.
corpus_file_extension: fid
corpus_comment_begin: <
corpus_comment_end: >
corpus_line_comment: ;;
node: S

an output file example

Here's the preface from an output file using "korean.prf". Notice the line

preference file: korean.prf

This line is how you know that CorpusSearch accessed your preference file. If you don't see this
line, your preference file was not found. Check that your preference file name ends with ".prf", and
that it's stored in the same directory as your query file.

/*
PREFACE:
CorpusSearch copyright Beth Randall 2000.
Date: Mon Feb 26 09:28:55 EST 2001

command file: kor.q
preference file: korean.prf
input file: add.out
output file: kor.out

node: S
query: (NNC iPrecedes NNC)
*/

Top of page
Table of Contents

 Coding

Table of Contents

CorpusSearch Home

Contents of this chapter:

What is coding?
a coding file example
an output file example
how to search coding strings
just the codes

What is coding?

Coding is used for creating input to multivariate analysis programs like Varbrul; general
statistical programming environments like S, Splus, and R; and statistical analysis packages
like Datadesk, JMP, SAS, and SPSS.

Coding string values in a coding file may be in part automatically determined with coding queries and
in part hand entered in a text editor. The resultant files can then be inputs to further searches.

a coding file example

Here's an example of a basic coding file, called "obj.c". All coding file names must end with ".c".
To simplify our discussion, we show only the first four columns of an originally more complicated
coding system.

node: IP*
coding_query:

1: {
 s: (IP*SPE* iDoms NP-OB*)
 n: ELSE
 }

2: {
 m: (IP-MAT* iDoms NP-OB*)
 s: (IP-SUB* iDoms NP-OB*)
 i: (IP-INF* iDoms NP-OB*)
 e: ELSE

 }

3: {
 t: ((IP* iDoms NEG)
 AND (NEG iDoms !ne))
 p: (IP* iDoms !NEG)
 n: ELSE
 }
4: {
 \1: (NP-OB* domsWords 1)
 \2: (NP-OB* domsWords 2)
 \3: (NP-OB* domsWords> 2)
 \0: ELSE
 }

In general, coding files have this form:

<PREAMBLE>
coding_query:

column_number: {
 label: condition
 label: condition
 .
 .
 .
 }

The coding file begins with the preamble commands (see Command File chapter), which must
include the obligatory bounding node for the coding queries. The obligatory query
specification "coding_query:" then introduces the coding queries for each column of the output
coding string.

In the present example, column 1 of the coding string will contain an "s" if IP*SPE* iDoms NP-
OB*. Everywhere else, due to the presence of the "ELSE" function (used only in coding queries),
the column will contain an "n".

Note that when numerals (0-9) are used as codes, they must be introduced with the backslash
character ("\"), as illustrated in column 4 above.

Coding query files are alternatives to ordinary query files in a CorpusSearch run. So, to code a
file, invoke CorpusSearch as follows:

java CorpusSearch <coding_file.c> <file_to_code>

an output file example

Output files resulting from coding will carry the extension .cod. They contain every token of the
input file, with coding nodes inserted at every boundary node. A coding node has the form:

(CODING <coding_string>)

If a given sentence contains more than one boundary node, the output sentence will contain
multiple coding nodes. Here's a sentence from the output file resulting from the above coding file:

/~*
knewe kyndes & complexciones of men & of bestus
(CMHORSES,85.2)
*~/

((IP-SUB (CODING n:s:p)
 (NP-SBJ *T*-1)
 (VBD knewe)
 (NP-OB1 (NS kyndes)
 (CONJ &)
 (NS complexciones)
 (PP
 (PP (P of)
 (NP (NS men)))
 (CONJP (CONJ &)
 (PP (P of)
 (NP (NS bestus)))))))
 (ID CMHORSES,85.2))

how to search coding strings

Coding strings may be searched using column. For instance, to find all boundary nodes whose
coding string contains "m" or "p" in the 7th column, use this query:

query: (CODING column 7 m|p)

just the codes

To obtain a file with only the coding strings, use print_only as follows:

print_only: CODING

The extension of the resultant output file will be .ooo.

Top of page
Table of Contents

 Lexicon Building

Table of Contents

CorpusSearch Home

Contents of this chapter:

What is a lexicon?
make_lexicon
pos_labels
text_labels
an example

What is a lexicon?

A lexicon is a list of the words used in an input file or files. Following each word is the number of
times the word was found, followed by the part-of-speech labels associated with the word and
the number of times each part of speech was found. Word identity is determined by spelling.
No morphological analysis or spelling normalization is performed. However, spellings that vary only
by capitalizations are listed on the same line. Also, initial "$" is ignored.

In the following example, this line:

a-boute 11: [9 P] [1 RP] [1 ADV]

means that the word "a-boute" was found 11 times, 9 times with the part of speech label "P", 1 time
with the part of speech label "RP", and 1 time with the part of speech label "ADV".

make_lexicon

This is the basic command that causes a lexicon to be built. On its own, the following will generate
a lexicon of every word in the input file(s).

make_lexicon: t

pos_labels

This command restricts the lexicon to words with certain part of speech tags. For instance, to obtain
a list of words labelled as prepositions:

make_lexicon: t
pos_labels: P|P#

text_labels

This command restricts the lexicon to certain words. For instance, to find only words beginning with
"th" or "+t":

make_lexicon: t
text_labels: th*|+t*|Th*|+T*

Both pos_labels and text_labels can be specified in one query. For instance, to obtain
prepositions beginning "in":

make_lexicon: t
pos_labels: P|P#

text_labels: in*

an example

The following query:

make_lexicon: t

results in this output:

/*
PREFACE:
CorpusSearch copyright Beth Randall 2000.
Date: Tue Sep 21 09:55:12 EDT 2004

command file: test/lex.q
output file: test/lex.out

Lexicon:
*/

/* ~A~ */
a A $a 3713: [3421 D] [10 FW] [104 HV] [15 VAN21] [24 ADV21] [25 P21] [8 VBD21]
[15 P] [1 RP21] [1 N21] [4 CONJ] [5 VB21] [6 N] [4 ADJ21] [68 INTJ] [1 VBN21]
[1 NUM21]
a+gen 15: [9 ADV] [6 P]
a+gennyst 1: [1 P]
a+gens 4: [4 P]
a+genst 2: [2 P]
a+geyne 10: [10 ADV]
a-+gen 63: [52 ADV] [11 P]
a-+gens 12: [12 P]
a-bak 1: [1 P+ADV]
a-bakke 1: [1 P+ADV]
a-baschyd 2: [2 VAN]
a-basshed 1: [1 VAN]
a-basshyd 1: [1 VAN]
a-beyn 1: [1 VB]
a-bod 1: [1 VBD]
a-bode 5: [5 VBD]
a-bood 4: [4 VBD]
a-boode 1: [1 VBD]
a-bouen 1: [1 P]
a-boute 11: [9 P] [1 RP] [1 ADV]
.
.
.
.
.
.
.
/* ~Z~ */
zacari 1: [1 NPR]
zacharie 1: [1 NPR]
zaram 1: [1 NPR]
zebede 1: [1 NPR]
zelator 1: [1 N]
zelatoris 1: [1 NS]
zele 6: [6 N]
zelose 2: [2 ADJ]
zelously 1: [1 ADV]

zeno 1: [1 NPR]
zenocrates 1: [1 NPR]
zenon 1: [1 NPR]
zepherine 1: [1 NPR]
zorobabel Zorobabel 3: [3 NPR]
zorobabell Zorobabell 4: [4 NPR]
zozime 1: [1 NPR]

Top of page
Table of Contents

 Local Frames

Table of Contents

CorpusSearch Home

Contents of this chapter:

What are local frames?
an example

What are local frames?

Local frames are an approximation to subcategorization and selectional contexts for lexical heads.
The user specifies a head whose contexts are to be found and displayed. This head consists of a part-
of-speech category and a lexical item of that category. CorpusSearch then returns a list of the
contexts in which the specified POS,word pair occurs in the corpus.

Each context is a string of sister nodes of the POS label(s) specified in the query. The list of contexts
is organized into subgroups that share the same "kernel," where a kernel is the subset of the
sister nodes whose phrasal category is NP*; that is, subjects and objects. If a PP occurs in a local
frame, its head preposition is given immediately following the PP label in the output.

This functionality is under development. Use it with care. Suggestions for improvement
are welcome.

an example

The following query:

node: IP*

local_frames: (VB* over +tank*|thank*)

results in this output (only the beginning is shown):

/*
PREFACE:
CorpusSearch copyright Beth Randall 2000.
Date: Tue Sep 21 10:08:43 EDT 2004

command file: test/frames.q
output file: test/frames.out

local frames: (VB* over +tank*|thank*)
*/

/*
NP-SBJ VB thankyn NP-OB2
*/

ALSO NP-SBJ MD VB NP-OB2 (ID CMKEMPE,57.1270)
CONJ NP-SBJ MD TO VB NP-OB2 PP for (ID CMKEMPE,46.1024)

/*
NP-SBJ VBD +tankyd NP-OB2
*/

NP-SBJ VBD NP-OB2 PP for (ID CMKEMPE,58.1308)
VBD NP-OB2 ADVP PP-RSP +terfore (ID CMKEMPE,78.1765)

/*
NP-SBJ VBD thankyd NP-OB2
*/

ADVP-TMP NP-SBJ IP-PPL VBD NP-OB2 PP as IP-PPL (ID CMKEMPE,224.3620)
ADVP-TMP NP-SBJ IP-PPL VBD NP-OB2 PP of (ID CMKEMPE,133.3113)
ADVP-TMP NP-SBJ VBD NP-OB2 PP of (ID CMKEMPE,25.533)
CONJ ADVP-TMP NP-SBJ PP wyth VBD NP-OB2 PP of IP-PPL (ID CMKEMPE,87.1978)
CONJ ADVP-TMP NP-SBJ VBD NP-OB2 ADVP PP of IP-PPL (ID CMKEMPE,94.2146)
CONJ ADVP-TMP NP-SBJ VBD NP-OB2 PP of IP-PPL (ID CMKEMPE,13.255)

Top of page
Table of Contents

 Automated Corpus Revision

Table of Contents

CorpusSearch Home

Contents of this chapter:

revision feature
Don't repeat flags.
label changes

replace_label
append_label
prepend_label
pre_crop_label
post_crop_label

structural changes
add_leaf_before
add_leaf_after
move_up_node
move_up_nodes
add_internal_node
delete_leaf
delete_node
delete_subtree

examples

revision feature

CorpusSearch 2 has a corpus-revision feature, which allows the user to make automatic changes to
a corpus. This is useful, for instance, in correcting parser errors, or revising a corpus to fit
new annotation guidelines.

Revisions are linked to a standard CS query, which is decorated with curly-bracket tags indicating
where revisions should take place. The curly brackets contain an index which correlates an argument
in the query to a revision instruction. I'll call the curly-bracket construction a "flag". This is the
general idea:

query: ({x}A function B) AND (C function {y}D)

revise{x}: info
revise{y}: info

Also see the examples.

don't repeat flags

Suppose you have a query where the same node is mentioned several times. You may be tempted to
flag the node every time it appears in the query, as below:

WRONG!
query: (NP* iDoms {1}[1]Q)
 AND (NP* iDoms {2}[2]Q)
 AND ({1}[1]Q iPrecedes {2}[2]Q)
add_internal_node{1, 2}: QP

The problem with this is that CorpusSearch only needs to have the arguments flagged once,
and repeating the flags just increases the possibility of error (for instance, the same flag might wind
up referring to two different nodes). For this reason, CorpusSearch ignores repeated flags, and issues
a warning when they are encountered. The above query produces these WARNING messages:

WARNING! Subsequent flag {1} has been ignored.

WARNING! Subsequent flag {2} has been ignored.

This version of the query is preferred:

query: (NP* iDoms {1}[1]Q)
 AND (NP* iDoms {2}[2]Q)
 AND ([1]Q iPrecedes [2]Q)
add_internal_node{1, 2}: QP

label changes

The simplest way to change a tree is to change labels, leaving the structure intact. CS has the
following label-changing revision functions:

replace_label
replace_label{x}: new_label

append_label
append_label{x}: label_to_append

prepend_label
prepend_label{x}: label_to_prepend

post_crop_label
post_crop_label{x}: label_to_crop

pre_crop_label
pre_crop_label{x}: label_to_crop

replace_label

This query:

node: IP*
query: ({1}NP-ACC iDoms N*)

replace_label{1}: BULLWINKLE

applied to this input:

((IP-MAT (NP-SBJ (PRO You))
 (MD must)
 (NEG not)
 (VB exspecte)
 (NP-ACC (Q no) (ADJ greate) (NS matters))
 (NP-TMP (D this) (N time))
 (. ,)) (ID KNYVETT-1630,87.25))

produces this output:

((IP-MAT (NP-SBJ (PRO You))
 (MD must)

 (NEG not)
 (VB exspecte)
 (BULLWINKLE (Q no) (ADJ greate) (NS matters))
 (NP-TMP (D this) (N time))
 (. ,))
 (ID KNYVETT-1630,87.25))

append_label

This appends the given label to the flagged argument. This query:

node: $ROOT

query: ({1}WPRO iDoms what|What) AND (WPRO iPrecedes IP*)

append_label{1}: -THAT

applied to this input:

((IP-MAT (CONJ but)
 (CP-QUE (WNP-1 (WPRO what))
 (IP-SUB (NP-TMP *T*-1)
 (NP-SBJ (PRO I))
 (MD shall)
 (VB returne)
 (NP-DIR (N home))))
 (NP-SBJ (PRO I))
 (BEP am)
 (ADJP (NP-MSR (D a) (Q little))
 (ADJ doubtfull))
 (. .)) (ID KNYVETT-1630,94.268))

produces this output:

/~*
but what I shall returne home I am a little doubtfull.
(KNYVETT-1630,94.268)
*~/
/*
1 IP-MAT: 6 WPRO, 7 what, 8 IP-SUB
*/

((IP-MAT (CONJ but)
 (CP-QUE (WNP-1 (WPRO-THAT what))
 (IP-SUB (NP-TMP *T*-1)
 (NP-SBJ (PRO I))
 (MD shall)
 (VB returne)
 (NP-DIR (N home))))
 (NP-SBJ (PRO I))
 (BEP am)
 (ADJP (NP-MSR (D a) (Q little))
 (ADJ doubtfull))
 (. .))
 (ID KNYVETT-1630,94.268))

prepend_label

This prepends the given label to the flagged argument. This query:

node: $ROOT
ignore_nodes: null
query: ({1}[1], iDoms [2],) AND ([1], iPres *-PRN)
 AND (*-PRN iPres [3],) AND ({2}[3], iDoms [4],)

prepend_label{1}: PRN-
prepend_label{2}: PRN-

applied to this input:

((IP-MAT (CONJ &)
 (NP-SBJ (PRO$ my) (NS horsses))
 (, ,)
 (IP-MAT-PRN (NP-SBJ (PRO I))
 (VBP thinke))
 (, ,)
 (MD $wil)
 (BE $be)
 (CODE {TEXT:wilbe})
 (VBN gone)
 (PP (P to)
 (NP (N morrowe)))
 (. ,)) (ID KNYVETT-1630,93.228))

produces this output:

/~*
& my horsses, I thinke, $wil $be gone to morrowe,
(KNYVETT-1630,93.228)
*~/
/*
1 IP-MAT: 9 ,, 10 ,, 11 IP-MAT-PRN, 17 ,, 18 ,
*/

((IP-MAT (CONJ &)
 (NP-SBJ (PRO$ my) (NS horsses))
 (PRN-, ,)
 (IP-MAT-PRN (NP-SBJ (PRO I))
 (VBP thinke))
 (PRN-, ,)
 (MD $wil)
 (BE $be)
 (CODE {TEXT:wilbe})
 (VBN gone)
 (PP (P to)
 (NP (N morrowe)))
 (. ,))
 (ID KNYVETT-1630,93.228))

pre_crop_label

This crops the label ending at the given character. This query:

node: $ROOT

query: (ADVP* iDoms {1}ADV+*)

pre_crop_label{1}: +

applied to this input:

((IP-MAT (CONJ &)
 (NP-SBJ (Q many))
 (VBD lost)
 (NP-ACC (PRO$ ther) (NS lifes))
 (PP (PP (P aboute)
 (NP (D the) (NS Teames)))
 (CONJP (CONJ &)
 (ADVP-LOC (ADV+WADV elsewher))))
 (. .)) (ID KNYVETT-1630,87.21))

results in this output:

/~*
& many lost ther lifes aboute the Teames & elsewher.
(KNYVETT-1630,87.21)
*~/
/*
1 IP-MAT: 26 ADVP-LOC, 27 ADV+WADV
*/

((IP-MAT (CONJ &)
 (NP-SBJ (Q many))
 (VBD lost)
 (NP-ACC (PRO$ ther) (NS lifes))
 (PP (PP (P aboute)
 (NP (D the) (NS Teames)))
 (CONJP (CONJ &)
 (ADVP-LOC (WADV elsewher))))
 (. .))
 (ID KNYVETT-1630,87.21))

post_crop_label

This crops the label beginning at the indicated character.

This query:

node: IP*
query: ({1}NP-ACC iDoms N*)

post_crop_label{1}: -
append_label{1}: -OBJ

applied to this input:

((IP-MAT (NP-SBJ (PRO You))
 (MD must)
 (NEG not)
 (VB exspecte)
 (NP-ACC (Q no) (ADJ greate) (NS matters))
 (NP-TMP (D this) (N time))
 (. ,)) (ID KNYVETT-1630,87.25))

produces this output:

((IP-MAT (NP-SBJ (PRO You))
 (MD must)
 (NEG not)
 (VB exspecte)
 (NP-OBJ (Q no) (ADJ greate) (NS matters))

 (NP-TMP (D this) (N time))
 (. ,))
 (ID KNYVETT-1630,87.25))

structural changes

CS has the following structure-changing revision functions. Use them with care, and always keep
a backup copy of your original file.

add_leaf_before
add_leaf_before{x}: (pos text)

add_leaf_after
add_leaf_after{x}: (pos text)

move_up_node
move_up_node{x}:

move_up_nodes
move_up_nodes{x, y}:

add_internal_node
add_internal_node{x, y}: new_label

delete_leaf
delete_leaf{x}:

delete_node
delete_node{x}:

delete_subtree
delete_subtree{x}:

It is possible for the described change to result in an illegal tree, that is, a tree with crossing
branches, or a tree containing an internal node with no leaf descendants (a pollarded tree?) If this is
the case, a warning is given and the tree is not changed.

add_leaf_before, add_leaf_after

This query:

node: IP*
query: (PP iDoms {1}P)

add_leaf_before{1}: (X BULLWINKLE)
add_leaf_after{1}: (Q ROCKY)

applied to this input:

((IP-MAT (PP (P Unto)
 (NP (D that)))
 (NP-SBJ (PRO they)
 (QP (Q all)))
 (ADVP (ADV well))
 (VBD accordyd))
 (ID CMMALORY,5.110))

produces this output:

/~*
BULLWINKLE Unto ROCKY that they all well accordyd
(CMMALORY,5.110)
*~/
/*
1 IP-MAT: 2 PP, 3 P
*/

((IP-MAT (PP (X BULLWINKLE)
 (P Unto)
 (Q ROCKY)
 (NP (D that)))
 (NP-SBJ (PRO they)
 (QP (Q all)))
 (ADVP (ADV well))
 (VBD accordyd))
 (ID CMMALORY,5.110))

move_up_node

This query:

node: IP*
query: (NP iDoms {1}D)

move_up_node{1}:

applied to this input:

((IP-MAT (ADVP-TMP (ADV Thenne))
 (PP (P in)
 (NP (Q all) (N haste)))
 (VBD came)
 (NP-SBJ (NPR Uther))
 (PP (P with)
 (NP (D a) (ADJ grete) (N hoost))))
 (ID CMMALORY,3.37))

produces this output:

((IP-MAT (ADVP-TMP (ADV Thenne))
 (PP (P in)
 (NP (Q all) (N haste)))
 (VBD came)
 (NP-SBJ (NPR Uther))
 (PP (P with)
 (D a)
 (NP (ADJ grete) (N hoost))))
 (ID CMMALORY,3.37))

Notice that the direction of movement is constrained by word order. If the node to move is a middle
or only child, a warning is given and the tree is not changed.

move_up_nodes

This query:

node: IP*
query: ({1}Q iprecedes {2}ADJ)

move_up_nodes{1, 2}:

applied to this input:

((IP-MAT (NP-SBJ (PRO You))
 (MD must)
 (NEG not)
 (VB exspecte)
 (NP-ACC (Q no) (ADJ greate) (NS matters))
 (NP-TMP (D this) (N time))
 (. ,)) (ID KNYVETT-1630,87.25))

produces this output:

((IP-MAT (NP-SBJ (PRO You))
 (MD must)
 (NEG not)
 (VB exspecte)
 (Q no)
 (ADJ greate)
 (NP-ACC (NS matters))
 (NP-TMP (D this) (N time))
 (. ,))
 (ID KNYVETT-1630,87.25))

If the indicated move would leave an internal node with no leaf descendants, a warning is given and
the tree is not changed.

add_internal_node

This query:

node: IP*
query: ({1}MD HasSister {2}VB)

add_internal_node{1, 2}: MDVP

applied to this input:

((IP-MAT-SPE (' ')
 (NP-VOC (N Sir))
 (, ,)
 (' ')
 (IP-MAT-PRN (VBD said)
 (NP-SBJ (NPR Ulfius)))
 (, ,)
 (' ')
 (NP-SBJ (PRO he))
 (MD wille)
 (NEG not)
 (VB dwelle)
 (NP-MSR (ADJ long))
 (E_S .)
 (' '))
 (ID CMMALORY,3.66))

produces this output:

((IP-MAT-SPE (' ')
 (NP-VOC (N Sir))

 (, ,)
 (' ')
 (IP-MAT-PRN (VBD said)
 (NP-SBJ (NPR Ulfius)))
 (, ,)
 (' ')
 (NP-SBJ (PRO he))
 (MDVP (MD wille) (NEG not) (VB dwelle))
 (NP-MSR (ADJ long))
 (E_S .)
 (' '))
 (ID CMMALORY,3.66))

If the addition of the indicated node would produce crossing branches in the tree, a warning is given
and the tree is not changed.

To add an internal node spanning just one existing node, list the same index twice. For instance,
this query:

query: (IP* iDoms {1}BE*)

add_internal_node{1, 1}: VP

applied to this input:

((IP-MAT-SPE (CONJ but)
 (ADVP (ADV truly))
 (NP-VOC (N gossip))
 (NP-SBJ (PRO you))
 (BEP are)
 (ADJP (ADJ welcome))
 (. ,))
 (ID DELONEY,69.9))

produces this output:

/~*
but truly gossip you are welcome,
(DELONEY,69.9)
*~/
/*
1 IP-MAT-SPE: 1 IP-MAT-SPE, 13 BEP
*/
((IP-MAT-SPE (CONJ but)
 (ADVP (ADV truly))
 (NP-VOC (N gossip))
 (NP-SBJ (PRO you))
 (VP (BEP are))
 (ADJP (ADJ welcome))
 (. ,))
 (ID DELONEY,69.9))

delete_leaf

The argument specified in the query can match either a part of speech or text node: in either case,
the entire part-of-speech/text pair is deleted.

If the indicated leaf is an only child, a warning is given and the tree is not changed.

This query:

node: IP*
ignore_nodes: null
query: (NP* iDoms {1}**)

delete_leaf{1}:

applied to this input:

((CP-QUE-SPE (INTJP (INTJ Tush))
 (NP-VOC (N woman))
 (, ,)
 (WNP-1 (WPRO what))
 (IP-SUB-SPE (NP-ACC *T*-1)
 (VBP talke)
 (NP-SBJ (PRO you))
 (PP (P of)
 (NP (D that))))
 (. ?)) (ID DELONEY,70.40))

produces this output:

/~*
Tush woman, what talke you of that?
(DELONEY,70.40)
*~/
/*
13 IP-SUB-SPE: 14 NP-ACC, 15 *T*-1
*/

((CP-QUE-SPE (INTJP (INTJ Tush))
 (NP-VOC (N woman))
 (, ,)
 (WNP-1 (WPRO what))
 (IP-SUB-SPE (VBP talke)
 (NP-SBJ (PRO you))
 (PP (P of)
 (NP (D that))))
 (. ?))
 (ID DELONEY,70.40))

delete_node

This is what syntacticians call "pruning". An internal node is deleted, but its descendants remain.

This query:

node: FRAG*

query: ({1}ADVP* iDoms ADV*)

delete_node{1}:

applied to this input:

((FRAG-SPE (WNP (WPRO What))
 (ADVP-TMP (ADV neuer))
 (NP (D a) (ADJ great) (N belly))
 (ADVP (ADV yet))
 (. ?)) (ID DELONEY,69.5))

yields this output:

/~*
What neuer a great belly yet?
(DELONEY,69.5)
*~/
/*
1 FRAG-SPE: 5 ADVP-TMP, 6 ADV
1 FRAG-SPE: 15 ADVP, 16 ADV
*/

((FRAG-SPE (WNP (WPRO What))
 (ADV neuer)
 (NP (D a) (ADJ great) (N belly))
 (ADV yet)
 (. ?))
 (ID DELONEY,69.5))

delete_subtree

This deletes the indicated node and all its descendants.

This query:

node: IP*
query: ({1}CONJP* iDoms CONJ*)

delete{1}:

applied to this input:

((IP-MAT (NP-SBJ (PRO I))
 (VBP hear)
 (CP-THT (C 0)
 (IP-SUB (NP-SBJ (NP (N Lady) (N Banbery))
 (CONJP-1 (CONJ and)
 (NP (D y=e=)
 (N Wardon)
 (PP (P of)
 (NP (NPR All) (NPRS
 Souls))))))
 (BEP is)
 (ADJP (ADJ dead))))
 (. .)) (ID ALHATTON,2,242.21))

results in this output:

((IP-MAT (NP-SBJ (PRO I))
 (VBP hear)
 (CP-THT (C 0)
 (IP-SUB (NP-SBJ (NP (N Lady) (N Banbery)))
 (BEP is)
 (ADJP (ADJ dead))))
 (. .))
 (ID ALHATTON,2,242.21))

examples

Here is an example from a Portuguese corpus. The contraction "dos" had been treated as one word,
but the corpus-builders later decided to split it into two pieces, a preposition "$de", and a

determiner "os":

Old:

 (PP (P+D-P dos)
 (NP (ADJ-P grandes)
 (N-P homens)

New:

 (PP (P $de)
 (NP (D-P os)
 (ADJ-P grandes)
 (N-P homens)

To make the above change, use this query file:

node: IP*
//copy_corpus: t
query: (PP iDoms {1}P+D-P) AND
 (P+D-P iDoms {2}dos) AND
 (P+D-P iPres NP) AND
 (NP iDomsFirst {3}*)

replace_label{1}: P
replace_label{2}: $de
add_leaf_before{3}: (D-P os)

The query file as shown will produce a standard CS output file. To produce a file containing the
input corpus file, with the changes described, un-comment "copy_corpus: t".

Top of page
Table of Contents

 Requirements for Corpus Compatibility

Table of Contents

CorpusSearch Home

Contents of this chapter:

your corpus
parse completely
labels must be single words
labels must not begin with digits
no square brackets
round parentheses
wrap your sentences
use identification nodes
an example of an incompatible corpus

your corpus

With the invention of trainable parsers more corpora are being built. So far, CorpusSearch has been
used to search Middle, Old and early Modern English, Chinese, Korean and Yiddish corpora. If
you're building a corpus, here's what you need to know to ensure that you can use CorpusSearch
to search it.

parse completely

CorpusSearch expects sentences to be completely parsed. That is, every piece of text is expected to
have a label affixed to it. If your sentence is only partially parsed, CorpusSearch won't break, but
you won't have any way to search the partially parsed areas of text.

labels must be single words

CorpusSearch expects labels to be single strings, that is, containing no spaces (" "). If your label
consists of multiple strings, the first string will be interpreted as the label and the next string will
be ignored (in the case of a phrase label), or picked up as original text (in the case of a word label).
For instance, if you try to use "NOUN PHRASE" as a label, CorpusSearch will interpret "NOUN" as the
label and ignore "PHRASE". On the other hand, "NOUN_PHRASE" will be interpreted as a label and
could be found using CorpusSearch.

labels must not begin with digits

Labels must not begin with digits ("0", "1","9"). Digits before labels will be interpreted as indices
left over from a previous search, and so will be ignored. Labels are allowed to *end* with digits,
though. So "PP1" is an acceptable label, but "1PP" is not.

no square brackets

Square brackets ("[" and "]") are used in CorpusSearch to enclose prefix indices. They were a safe
choice because the Middle English corpus doesn't contain any square brackets to search for. If
your corpus contains square brackets, they will probably have to be changed, or they will be difficult
to search for.

tree must be described with round parentheses

CorpusSearch expects the structure of the sentence to be described with round parentheses ("(", ")").
If your tree is described with "{" or "[" or some other system, you will have to convert it to "(" and ")".

wrap your sentences

CorpusSearch expects every sentence to have a "wrapper", that is, a pair of parentheses surrounding
the sentence. The wrapper is a useful place to store items that are extraneous to the sentence but
linked to it, for instance ID nodes. Here's an example: the "wrapper" consists of the first and
last parentheses seen here:

(
 (IP-MAT
 (ADVP-TMP (ADV Thenne))
 (NP-SBJ (NPR quene) (NPR Igrayne))
 (VBD waxid)
 (ADVP-TMP (ADV dayly))
 (ADJP (ADJR gretter) (CONJ and) (ADJR gretter))
 (E_S .))
 (ID CMMALORY,5.120))

use identification nodes

Although CorpusSearch can function without identification nodes (labelled "ID"), it's better to have
them. When CorpusSearch searches the output of a previous search, it uses the ID nodes to
keep statistics for the header, footer and summary blocks. Here's an example of an ID node:

(ID CMMALORY,5.120)

Here, the CMMALORY identifies the source file, 5 is the page number, and 120 is the sentence number
in that file. In general, an ID node should have this form:

(ID <source_name>,<free_space>.<sentence_number>)

The information between the source_name and the sentence_number is actually not referenced
by CorpusSearch. It could be used to store page numbers (as in the Middle English Corpus), or
some other information, or not used at all. The important thing is that the ID_string must begin with
a string followed by a comma (to be picked up as the source_name), and end with a "." followed by
a sentence number.

Notice that there are no spaces (" ") in the information following the label "ID". This is crucial, because
it ensures all the information will be picked up as one string.

CorpusSearch expects to find the ID node just after the sentence ending but inside the
sentence wrapper.

an example of an incompatible corpus

In 1994, Beatrice Santorini of the University of Pennsylvania built a corpus of parsed and
annotated Yiddish texts. Like Phase 1 of the Middle English corpus, the Yiddish corpus was parsed
only to the first level of constituents. This "flat parsing" was searchable using Perl scripts that
matched regular expressions.

One passage from the corpus tells a joke that begins this way:

"When you tell a story to a peasant, he laughs three times. He laughs the first time when someone tells
him the story. The second time, when it is explained to him. And the third time, when he understands
the story."

I'll examine one sentence from that passage:

"He laughs the first time when someone tells him the story."

Here it is as it appears in the corpus. (For this discussion, we don't need the definitions of the words
and their labels, so I have omitted them.)

 (
 [t dem ershtn mol] [v0 lakht] [s er] ,
 [B [c ven] [s men] [v0 dertseylt] [i im] [d di mayse] , B]
)
 (RO,1)

The first problem here is the existence of square brackets ("[", "]"), which CorpusSearch
doesn't recognize. So the first task is to convert the square brackets to round parentheses:

 (
 (t dem ershtn mol) (v0 lakht) (s er) ,
 (B (c ven) (s men) (v0 dertseylt) (i im) (d di mayse) , B)
)
 (RO,1)

This form of the sentence can be partly searched by CorpusSearch. For instance, this query:

node: *
query: (v0 iPrecedes s)

will find the structure (v0 lakht) (s er), as expected. Notice that the node boundary had to be set to *;
if you set the node boundary to IP*, as is normal for the Penn corpora, nothing will be found,
because the sentence does not contain IP*.

However, the sentence is still not fully compatible with CorpusSearch because it is not
completely parsed. For instance, the phrase "dem ershtn mol" ("the first time") has been parsed as
one object. So if you run this query:

node: *
query: (ershtn precedes mol)

the structure will not be found. This is because CorpusSearch expects every leaf node to contain
exactly two objects: a label and a single-string piece of text. Any extra information will be stored as
part of the node but it will usually not be examined by the search functions. These extra pieces
of information (in this case, the strings "ershtn" and "mol") behave as useless baggage that is
carried along by the sentence vector but never opened.

Similarly, the ", B" that marks the end of the B-labelled clause, and the "," that separates the B-
labelled clause from the rest of the sentence, are never actually referenced, so they may as well
be removed. The parentheses are enough to convey the information that the B-labelled clause ends,
and that the B-labelled clause is separate from the rest of the sentence.

Here is the sentence, fully parsed, and with extraneous labels removed:

 (
 (t (det dem) (adj ershtn) (n mol)) (v0 lakht) (s er)
 (B (c ven) (s men) (v0 dertseylt) (i im) (d (det di) (n mayse)))
)
 (RO,1)

Now, the query

node: *
query: (ershtn precedes mol)

will find the structure as expected:

/~*
dem ershtn mol lakht er ven men dertseylt im di mayse
(RO,1.3)
*~/

/*
 1 t: 3 adj ershtn, 4 n mol
*/

(0
 (1 t (2 det dem) (3 adj ershtn) (4 n mol))
 (5 v0 lakht)
 (6 s er)
 (7 B (8 c ven)
 (9 s men)
 (10 v0 dertseylt)
 (11 i im)
 (12 d (13 det di) (14 n mayse)))
 (15 ID RO,1.3))

Finally, there is the node (RO,1). This identifies the sentence as being part of the first story told
by informant Royte Pomerantsen. This needs to be given the standard CorpusSearch ID node form
and stuck inside the wrapper. I'll make it sentence number 3:

 (
 (t (det dem) (adj ershtn) (n mol)) (v0 lakht) (s er)
 (B (c ven) (s men) (v0 dertseylt) (i im) (d di) (n mayse))
(ID RO,1.3)
)

and our sentence is now fully compatible with CorpusSearch.

Top of page
Table of Contents

 The CorpusSearch Quick Reference Page

Table of Contents

CorpusSearch Home

To run CorpusSearch:

for automatic output file (command.out)

...CorpusSearch <command.q> <input-files>

for output file with your choice of name (my_name.out)

...CorpusSearch <command.q> <input-files> -out my_name.out

Query file names must end in ".q". Output file names must end in ".out". Preference file name must
end in ".prf" and be located in the same directory as the query being run.

some commonly used search
functions
X exists (a node labeled X exists anywhere in token)
X precedes Y (X precedes Y without overlapping)
X iPrecedes Y (X immediately precedes Y)
X dominates Y (X dominates Y with any length path between them)
X domsWords # (X dominates # of words)
X iDominates Y (X immediately dominates Y)
X iDomsLast Y (X immediately dominates Y as last child)
X iDomsMod Y Z (X dominates Z with at most Y's intervening)

X iDomsNumber # Y (X immediately dominates Y as first, second, etc.
child)

X iDomsOnly Y (X immediately dominates Y as only child)
X iDomsTotal # (X immediately dominates # of daughters)
X inID (X occurs in ID node)
X isRoot (X is the root node of the token's parse tree)
X sameIndex Y (X and Y have the same numerical index)
CODING column # X (X occurs in coding node in column #)
logical operators
A AND B (predicates A and B - possibly complex - must both be true of hits)
NOT A (expression A - possibly complex - must be false of hits)
A OR B (at least one of expressions A and B must be true of hits)
! (negate one argument to a predicate)
| (link alternative matches in an argument to a predicate)

wild cards:
* matches any character
matches any digit(s) (0, 1, ... 9)

command-file components:

command default command default
print_complement: false query: required: no default

print_indices: false node: required: no default

nodes_only: false ignore_nodes: COMMENT|CODE|ID|LB|'|\"|,|E_S|.|/|RMV:
*

remove_nodes: false add_to_ignore: adds labels to default
only_ur_text: false define: <my.def> includes definition file

remarks:

begin_remark:
<remark>
end_remark

includes remark in search output file

Top of page
Table of Contents

 Using CorpusSearch with POS-tagged Files

Table of Contents

CorpusSearch Home

Contents of this chapter:

Format of a part-of-speech tagged corpus
Search functions

Exists
iDominates
iPrecedes
Neighborhood
Precedes

Format of a part-of-speech tagged corpus
CorpusSearch can search files that are tagged for part of speech but not further parsed for
syntactic structure.

Here is a template for the format of a POS-tagged corpus file:

#!FORMAT=POS_1

Insert header information, if any, below format line above, which must be
the first line in the file.

<text>

WORD1/TAG WORD2/TAG WORD3/TAG/.

WORD1/TAG WORD2/TAG WORD3/TAG ?/.

.....

</text>

Every word in a POS-tagged file after the initial "" tag should end with a backslash and tag, followed by
a space. There can be no spaces within a word or between a word and its tag. Note that every
sentence of the corpus must end with a punctuation mark. Also, there must be a blank line
between sentences. If the format of the file is "POS_1", the tag for sentence final punctuation must be
a period. If the format is "POS_0", an alternative format, the tag for sentence final punctuation
is "PONFP". Sentence internal punctuation must also be treated as a separate word with a tag,
which should be different from the sentence final punctuation tag.

Search functions
The query file for searching a POS-tagged corpus looks much like that for a parsed corpus. The
node boundary, however, is always $ROOT. CorpusSearch treats POS-tagged files as
containing sentences parsed with a completely flat structure, with every word/tag pair as an
immediate daughter of the root node. The tag for a word is treated as its mother, so that a query like
"(N iDoms king)" returns sentences containing the word/tag pair "king/N". Because of the flat
structure of a POS-tagged file, many CorpusSearch functions cannot be used. Below is a list of those
that are ordinarily appropriate. The function "Neighborhood" works only on POS-tagged files.

Exists (variants: exists)

Exists searches for a POS tag or text anywhere in the sentence. For instance, this query:

(MD0 exists)

will find this sentence:

/~*
I shal not conne wel goo thyder ./. (ID CMREYNAR,14.261)
*~/

/*
 4 MD0 conne
*/

((PRO I) (MD shal) (NEG not) (MD0 conne) (ADV wel)) (VB goo) (ADV thyder))

iDominates (variants: idominates, iDoms, idoms)

iDominates means "immediately dominates". That is, x dominates y if y is a child of x. So this query:

((PRO iDominates he) AND (FP iDominates ane))

finds this sentence:

/~*
Sythen he ledes +tam by +tar ane,
(CMROLLEP,118.978)
*~/

/*
 2 PRO he, 7 FP ane
*/
((ADV Sythen) (PRO he) (VBP ledes) (8 PRO +tam) (10 P by) (12 PRO$ +tar) (13
FP ane) (. ,))

/*

Notice that "iDominates" describes the relationship between a POS tag and its associated text (e.g.,
"FP" and "ane").

iPrecedes (variants: iprecedes, iPres, ipres)

This function is true if and only if its first argument immediately precedes its second argument in
the text/tag string.

The following query:

query: (as iPrecedes sone) AND (sone iPrecedes P)

finds this sentence:

/~*
and as sone as he myght he toke his horse .
(CMMALORY,206.3401)
*~/
/*
2 as, 3 sone, 4 P as
*/

(CONJ and) (ADVR as) (ADV sone) (P as) (PRO he) (MD myght) (PRO he) (VBD toke)
(PRO$ his) (N horse) (. .))

Neighborhood (variant: neighborhood)

Neighborhood takes three arguments, two words or tags and a number. It searches for sentences
in which the two words/tags occur within a certain number of words of one another. For instance,
this query:

query: (whoreson Neighborhood 2 wilt)

will return all tokens in the corpus in which the word "whoreson" is within two words of the word
"wilt," for instance, the following sentence:

/~*
why thou whoreson when wilt thou be maried?
(DELONEY,79.296)
*~/
/*
3 whoreson, 5 wilt
*/

((WADV why) (PRO thou) (N whoreson) WADV when) (MD wilt) (PRO thou) (BE be)
(VAN maried) (. ?))
 (ID DELONEY,79.296))

Precedes (variants: precedes, Pres, pres)

"x precedes y" means "x comes before y in the sentence but perhaps not immediately". So this query:

(VB precedes N)

finds this case:

/~*
thenne have ye cause to make myghty werre upon hym.
(CMMALORY,2.25)
*~/

/*
 6 VB make, 8 N werre
*/

((ADV thenne) (HV have) (PRO ye) (N cause) (TO to) (VB make) (ADJ myghty) (N
werre) (P upon)

(PRO hym) (. .))
 (ID CMMALORY,2.25))

Top of page
Table of Contents

 CorpusDraw Basic Concepts

Table of Contents

CorpusSearch Home

Contents of this chapter:

What is CorpusDraw?
Input to CorpusDraw

source file(s)
command file
file of legal tags

The CorpusDraw graphical user interface
the tree display window
the text window
editing buttons
display buttons

Output of CorpusDraw

What is CorpusDraw?

CorpusDraw displays the tree structures assigned to sentences in a parsed corpus and allows
an annotator to edit these trees in the course of corpus construction or revision. It can also be used
to display parse trees for presentation purposes.

Input to CorpusDraw

CorpusDraw accepts the following command line arguments:

1. an optional specification of structural constraints on what sentences to display (command file).
2. the corpus file to display (source file).

In addition, CorpusDraw will read in a file of legal syntactic and part-of-speech tags, if one is
supplied. The corpus file, command file, and CorpusSearch program itself must reside in
different directories. The recommended directory configuration has a root corpus directory with
three sister subdirectories, one for CorpusSearch itself, one for the corpus source files and one for
the command files and for the file of legal tags. When starting CorpusDraw, the current directory
should normallybe the root directory of the corpus, with the path to the corpus file being worked
on specified on the command line.

source file

A source file is any file that contains parsed, labelled sentences. This could be a file from the
Penn Parsed Corpora of Historical English or from another parsed corpus.

command file

The command file contains a query, which describes a structure that every sentence must meet to
be displayed by CD. The use of such a command file allows the annotator to view only those
sentences relevant for a given editing change being implemented on the corpus.

file of legal tags

If CorpusDraw is given a file of legal tags, it will constrain node labels, both phrasal and part-of-
speech tags, to come from the list in this file. This constraint prevents the accidental introduction of
ill-formed labels.

To create a file of legal tags, the following lines should be inserted into a command file with the
name "tags.q":

corpus_encoding: UTF-8

make_tag_list: t

The corpus_encoding line should be changed if the corpus font encoding is other than UTF-8.
The command file may not contain any other contents. When CorpusSearch is run on the entire
parsed corpus with this command file, a file with the name "tags.tag" is created. This is the legal tags
file used by CorpusDraw.

The CorpusDraw graphical user interface

The CorpusDraw GUI is intended to be largely self-explanatory. The display, which can be seen
by clicking here, contains the follow parts:

● a tree display window
● a window containing the text of the displayed sentence
● a top row of buttons for editing the tree
● a second row of buttons for modifying the display for ease of use

The scroll bars at the bottom and on the right edge of the tree display window allow different parts
of the tree to be centered in the window. This can also be accomplished by clicking on the word in
the text window that the user wishes to place in the center of the display. The arrows at left of
the editing button row move the display from one sentence to the next.

The editing buttons allow the annotator to change node labels, to move nodes and their
descendants around in the tree, to coindex nodes, and to add empty categories the various
types specified in the legal tags file. CorpusDraw will not permit the annotator to accidently change
the order of words in the sentence or to delete any.

The actions controlled by the editing buttons can also be triggered by the use of shortcuts,
both keystrokes and mouse clicks. Some of these require a sequence of keystrokes or clicks. A
current list of these shortcuts can be found in the next section of the manual. Here is a QuickTime
movie of these shortcuts in action:

Output of CorpusDraw

When CorpusDraw is displaying a file with the name "foo.psd" and the file is saved after certain
changes are made, the saved file has the name "foo.psd.new." This change in name guarantees
that changes can easily be discarded.

Top of page
Table of Contents

 The CorpusDraw Editing Buttons

Table of Contents

CorpusSearch Home

Editing buttons
The corpus is displayed one token at a time, where a token is a matrix
sentence with an ID number. Most of the editing functions require the user
first to select a node or nodes in the parse tree. The action indicated by the
button name is taken with respect to the selected node(s). When two nodes
are selected, the order of selection is normally significant. Often, after
clicking on a button, the user must enter information into the input box
located at the left edge of the second row of the toolbar.

Previous Token Moves to the previous
token.

Next Token Moves to the next token.

Go To
Moves to the token whose
number is subsequently
entered into the input box.

Reset
Resets the current token
to its state when the
current file was last saved.
Disabled.

Undo Undoes the last action.
May be repeated.

Redo Redoes the last undone
action. May be repeated.

Change Label
Changes the label of the
selected node. Will ask for
user input.

Add Node
Adds a node with label to
be supplied as the mother
of the selected node.

Delete
Deletes the selected node.
Part-of-speech tags and
text elements may not be
deleted.

Move To

After two nodes are
selected, moves the first
node to be a daughter of
the second. Fails if this
movement would cause a
change in word order.

CoIndex
co-indexes the second of
two selected nodes with
the first.

Insert Zero Left
Inserts a zero empty
category as the left sister
of the second of two
selected nodes.

Insert Zero Right
Inserts a zero empty
category as the right
sister of the second of
two selected nodes.

Insert Trace Left
Inserts a trace empty
category as the left sister
of the second of two
selected nodes.

Insert Trace Right
Inserts a trace empty
category as the right
sister of the second of
two selected nodes.

Merge With Previous Token
Merges the current token
as the daughter of the
root node of the previous
token.

Merge With Next Token
Merges the current token
as the daughter of the
root node of the next
token.

Split Token

Splits the current token
into two tokens at the
selected node. Splits
cannot be undone.

Top of page
Table of Contents

 The CorpusDraw File and Display Buttons

Table of Contents

CorpusSearch Home

File and display buttons
The file buttons are for saving the working file and quitting the program. The
display buttons allow the user to alter the display to make working on the
token easier. When nodes are collapsed, only the root of the collapsed
subtree is visible.

Save Saves the file being viewed in
its current state.

Shrink
Shrinks the token being viewed
to make more of it visible.
Disabled.

Swell Undo a prior shrink operation.
Disabled.

Show Only Listed
Nodes

Displays only node labels on
the Show list.

Show All Nodes Undoes a Show Only operation
and displays all nodes.

Node List for Show
Only

Requests user to input a list of
node labels for Show Only.

Collapse Node(s) Collapses previously selected
node or nodes.

Expand Node(s) Expands previously selected
and collapsed nodes.

Expand All Nodes
Expands all nodes in the
current tree, including nodes
with labels on the collapse list.

List of Nodes to
Collapse

Asks the user to enter a list of
node labels to collapse in the
current and subsequently
displayed tokens.

Help Puts up a list of keyboard
shortcuts.

Quit Current File
Puts up a quit dialog. The user
is prompted to save before
quitting.

Quit
Puts up a quit dialog. The user
is prompted to save before
quitting.

Top of page
Table of Contents

 CorpusDraw Shortcuts

Table of Contents

CorpusSearch Home

CorpusDraw Users Guide: Shortcuts

Scrolling shortcut: to scroll to a different part of the tree, left-click on the
corresponding word in the text window.

Function Keystroke (optional) Mouseclick

<-- esc 2

--> esc 1

GoTo esc g

Undo esc u right-click on background

Redo esc r shift right-click on background

Label esc l shift left-click

Add Node esc n ctrl left-click

Delete esc d shift ctrl left-click

MoveTo esc m left-click on node to move, right-click on target node

CoIndex esc c

<--0 esc b

0--> esc a

<--Trace esc x left-click on following sibling, ctrl right-click on
antecedent

Trace--> esc y left-click on preceding sibling, ctrl shift right-click
on antecedent

<--Merge esc p

Merge--> esc f

Split esc s

To select nodes using the keyboard, use the arrow keys to move the orange dot to
the desired node. Then hit the space bar to select the node (you'll see it
surrounded by a red box.) Then continue as usual.

Top of page
Table of Contents

	sourceforge.net
	CorpusSearch | Home
	CorpusSearch | Home
	Available Corpora Compatible with CorpusSearch
	CorpusSearch Users Guide: Table of Contents
	CorpusSearch | Home
	CorpusSearch | Home
	CorpusSearch | Home
	What Is CorpusSearch?
	What's new in CorpusSearch 2
	Getting started with CorpusSearch
	CorpusSearch Query Language
	CorpusSearch Search Functions
	CorpusSearch Logical Operators
	The CorpusSearch Command File
	Understanding the Output
	Searching for Words
	Search Tips
	Using Definition Files
	Using Preference Files
	Coding
	Lexicon
	Local Frames
	Automated Corpus Revision
	How to Make Your Corpus Compatible with CorpusSearch
	CorpusSearch Quick Reference Page
	CorpusSearch Search Functions
	What Is CorpusDraw?
	CorpusDraw Editing Buttons
	CorpusDraw File and Display Buttons
	CorpusDraw Shortcuts?
	http://corpussearch.sourceforge.net/CS-manual/CD1.jpg

